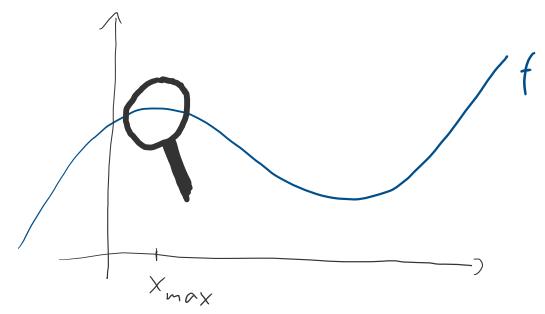


Überblick zum Thema

Kurvenuntersuchung*



* auch Funktionsuntersuchung genannt, da wir damit üblicherweise das Untersuchen von Funktionsgraphen meinen

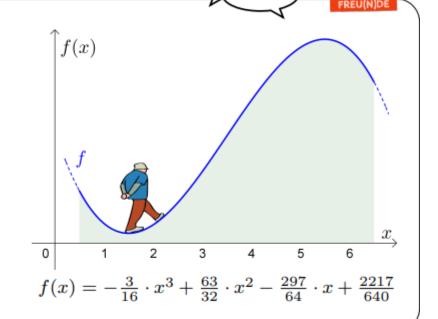
MATHEMATIK

Steigungen berechnen

Der dargestellte Funktionsgraph modelliert das Profil eines Hügels:

- Wo ist der tiefste Punkt?
- Wo ist der höchste Punkt?
- Wie misst man die Steigung in einem Punkt?
- Wo geht es am steilsten bergauf?

Die Differentialrechnung gibt exakte Antworten auf diese Fragen.



Überblick

- Monotonieverhalten und Extremstellen
- Krümmungsverhalten und Wendestellen
- Asymptotisches Verhalten

Monotonieverhalten

Rechts ist der Graph einer Funktion f im Intervall [0; 11] dargestellt.

f ist **streng monoton steigend** im Intervall [0; 2].

Das heißt, für alle $x,y \in [0;2]$ gilt: $x < y \implies f(x) < f(y)$

f ist monoton steigend im Intervall [0; 4].

Das heißt, für alle $x, y \in [0; 4]$ gilt: $x < y \implies f(x) \le f(y)$

f ist streng monoton fallend im Intervall [4; 7].

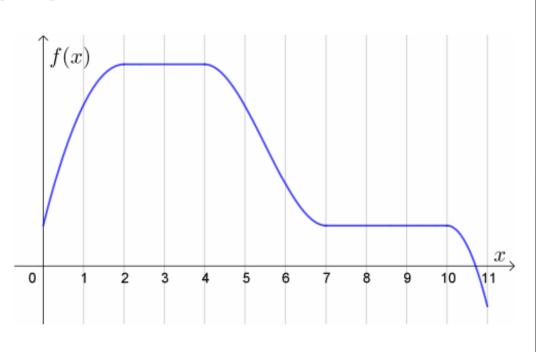
Das heißt, für alle $x,y \in [4;7]$ gilt: $x < y \implies f(x) > f(y)$

f ist monoton fallend im Intervall [2; 11].

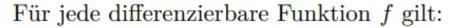
Das heißt, für alle $x, y \in [2; 11]$ gilt: $x < y \implies f(x) \ge f(y)$

f ist **konstant** im Intervall [2; 4].

Das heißt, für alle $x, y \in [2; 4]$ gilt: f(x) = f(y)

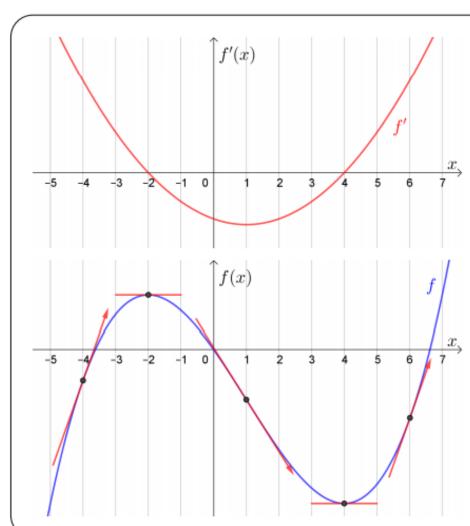


Vorzeichen von $f' \sim$ Monotonieverhalten von f



- Ist f'(x) > 0 für alle Stellen x eines Intervalls, so ist f streng monoton steigend in diesem Intervall.
- Ist f'(x) < 0 für alle Stellen x eines Intervalls, so ist f streng monoton fallend in diesem Intervall.

Das und mehr folgt aus dem Mittelwertsatz der Differentialrechnung.



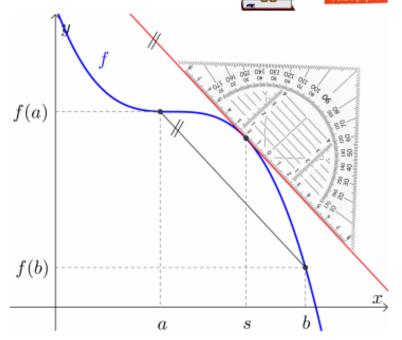
Mittelwertsatz der Differentialrechnung

Mittelwertsatz der Differentialrechnung:

Sei $f:[a;b] \to \mathbb{R}$ eine stetige Funktion, die auf]a;b[differenzierbar ist.

Dann gibt es eine Stelle s in a; b, sodass:

$$f'(s) = \frac{f(b) - f(a)}{b - a}$$



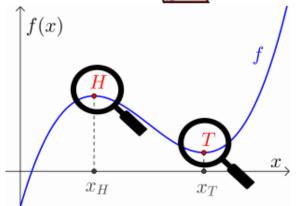
Da gehl noch mehr...

(3)
$$f'(x) = 0 \quad \forall x \in Ja; b [\Leftarrow)$$
 { konstant in [a; b]

MATHEMATIK macht FREU(N)DE

Am Graphen der rechts dargestellten Funktion f sind ein **Hochpunkt** H und ein **Tiefpunkt** T eingezeichnet.

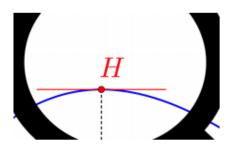
Solche Punkte werden auch **Extrempunkte** genannt. Die zugehörigen Stellen x_H und x_T sind **Extremstellen**.



In einem Hochpunkt ist der Funktionswert lokal am größten. Es gilt also

$$f(x_H) \ge f(x)$$

für alle x im Definitionsbereich nahe um x_H . Blicken wir nahe genug auf den Hochpunkt, dann sehen wir keine größeren Funktionswerte:

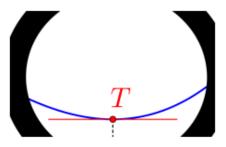


H heißt deshalb auch lokales Maximum.

In einem Tiefpunkt ist der Funktionswert lokal am kleinsten. Es gilt also

$$f(x_T) \leq f(x)$$

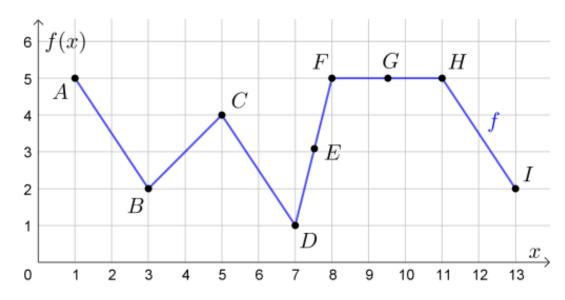
für alle x im Definitionsbereich nahe um x_T . Blicken wir nahe genug auf den Tiefpunkt dann sehen wir keine kleineren Funktionswerte:



T heißt deshalb auch lokales Minimum.

Extremstellen & Extrempunkte

Die dargestellte stückweise lineare Funktion f ist im Intervall [1; 13] definiert:



f ist an jeder Stelle im Intervall [1; 13] stetig. f ist an den Knickstellen nicht differenzierbar.

Was soll sonst die Tangente im Punkt B sein?

Kreuze rechts an.

	Hochpunkt	Tiefpunkt
A	ja □ nein □	ja □ nein □
B	ja □ nein □	ja □ nein □
C	ja □ nein □	ja □ nein □
D	ja □ nein □	ja □ nein □
E	ja □ nein □	ja □ nein □
F	ja \square nein \square	ja □ nein □
G	ja □ nein □	ja □ nein □
H	ja □ nein □	ja \square nein \square
I	ja □ nein □	ja □ nein □

${\bf 1.\,Ableitung stest}$

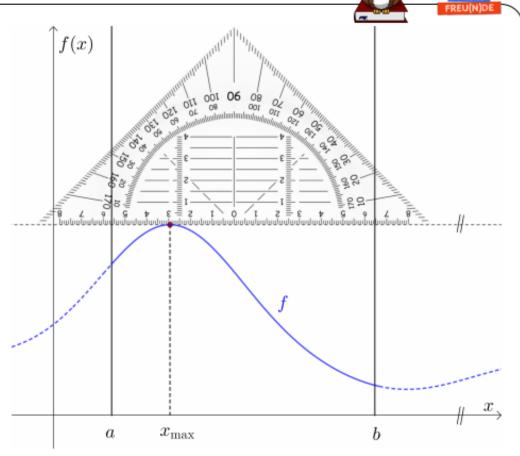
MATHEMATIK macht FREU(N)DE

1. Ableitungstest (first derivative test):

Sei $f:]a; b[\to \mathbb{R}$ eine differenzierbare Funktion und x_0 in]a; b[.

Wenn x_0 eine Extremstelle ist, dann gilt:

$$f'(x_0) = 0$$



Sattelstellen & Sattelpunkte

Wenn x_0 eine Extremstelle einer differenzierbaren Funktion f ist, dann gilt $f'(x_0) = 0$.

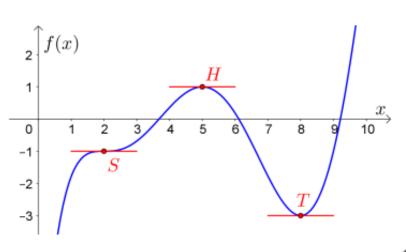
Die waagrechten Tangenten im Hochpunkt H und im Tiefpunkt T sind im Bild unten angedeutet.

Aus $f'(x_0) = 0$ folgt noch *nicht*, dass x_0 eine Extremstelle ist:

Im Beispiel rechts gilt f'(2) = 0. Der Punkt $S = (2 \mid -1)$ ist aber weder ein Hochpunkt noch ein Tiefpunkt.

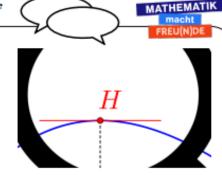
Einen solchen Punkt nennt man Sattelpunkt. Die zugehörige Stelle nennt man Sattelstelle.

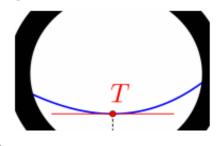
Wenn $f'(x_0) = 0$ gilt und x_0 keine Extremstelle ist, dann ist x_0 eine Sattelstelle.



Vorzeichenwechsel von $f' \implies$ Extremstelle von f

Wenn f' an der Stelle x_0 das Vorzeichen von + auf - wechselt, dann ändert f das Monotonieverhalten von \nearrow auf \searrow . f hat also an der Stelle x_0 ein lokales Maximum.



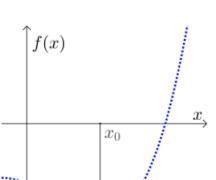


Wenn f' an der Stelle x_0 das Vorzeichen von — auf + wechselt, dann ändert f das Monotonieverhalten von \searrow auf \nearrow . f hat also an der Stelle x_0 ein lokales Minimum.

Beobachtung: Sei g diff-bar und g(xo)=0.

91/ q'(x0)>0

Hin eichende Bedingung für Extremstellen



Im Bild links gift $f'(x_0) > 0$ und $f''(x_0) > 0$.

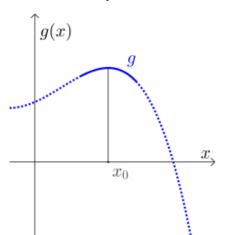
Dann ändert f' das Vorzeichen von - auf +.

 \underline{x} Also hat f an der Stelle x_0 ein lokales

Im Bild rechts gilt $g'(x_0) = 0$ und $g''(x_0) < 0$.

Dann ändert g' das Vorzeichen von + auf -.

Also hat \boldsymbol{g} an der Stelle $\boldsymbol{x_0}$ ein lokales



Hinreichend, aber nicht notwendig

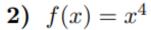
MATHEMATIK

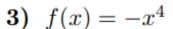
Für eine Funktion f gilt $f'(x_0) = 0$ und $f''(x_0) = 0$. Folgt daraus, dass f an der Stelle $x_0 \dots$

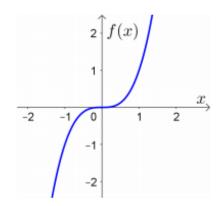
...einen Sattelpunkt hat?

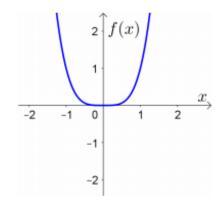
...ein lokales Minimum hat? ...ein lokales Maximum hat?

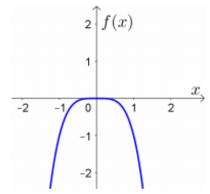
1)
$$f(x) = x^3$$











Gilt $f'(x_0) = 0$ und $f''(x_0) > 0$, dann hat f an der Stelle x_0 ein lokales Minimum.

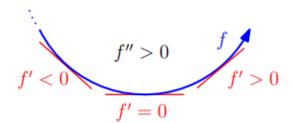
Am Beispiel $f(x) = x^4$ sehen wir allerdings, dass f an der Stelle x_0 ein lokales Minimum haben kann, obwohl $f''(x_0) = 0$ gilt.

Wenn $f'(x_0) = f''(x_0) = 0$ gilt, dann kann f dort einen Sattelpunkt, ein lokales Minimum oder ein lokales Maximum haben.

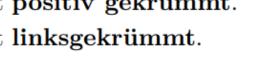
Krümmungsverhalten

Mit Hilfe der zweiten Ableitung f'' können wir das **Krümmungsverhalten** von f untersuchen.

1) Ist f''(x) > 0 für alle Stellen x eines Intervalls, so ist f' streng monoton steigend in diesem Intervall. Die Steigung von f wird in diesem Intervall also immer größer. Wir sagen auch:

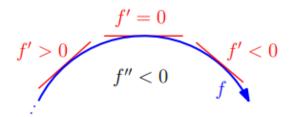


Der Graph von f ist **positiv gekrümmt**. Der Graph von f ist **linksgekrümmt**.



Ist der Graph eine Straße in Vogelperspektive, dann fahren wir eine Linkskurve.

2) Ist f''(x) < 0 für alle Stellen x eines Intervalls, so ist f' streng monoton fallend in diesem Intervall. Die Steigung von f wird in diesem Intervall also immer kleiner. Wir sagen auch:



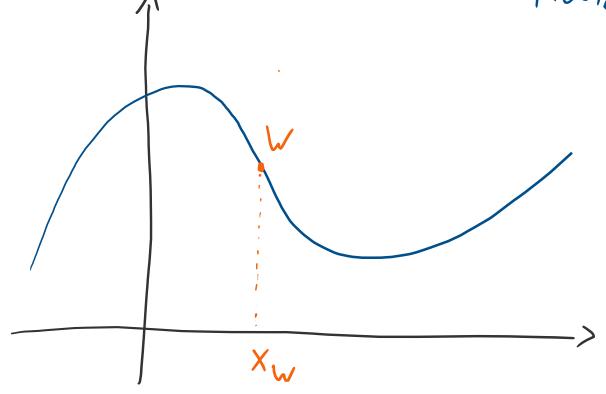
Der Graph von f ist **negativ gekrümmt**.

Der Graph von f ist **rechtsgekrümmt**.

Ist der Graph eine Straße in Vogelperspektive, dann fahren wir eine Rechtskurve.

Wendestellen

x ist Vendestelle von f: (=> bei x u ändert sich das Monotonieverhalten von f'



Wendestellen

xw ist Wendestelle von f: (=> bei xw ändert sich das Monotonieverhalten von f'

=> Vendestellen sind Extremstellen der ersten Ableitung. Insb. gilt also

xw ist Wendestelle von f => f"(xw)=0

=> Um Wendestellen zu finden, eignen sich unsere Methoden fürs Finden von Extremstellen sehr gut/perfekt. Vir müssen sie halt einfach auf die erste Ableitung anwenden.

Bemerkung zum Begriff "Krümmung"

Krömmung beschreibt die lokale Abweichung einer Kurve von einer Gerade. Für den Graphen einer (zweimal diff-baren) Funktion f lässt sich die Krümmung an der Stelle x berechnen durch

$$\hat{k}(x) = \frac{f''(x)}{(1 + (f'(x))^2)^{\frac{3}{2}}}$$

" ("(x) ist die Krümmung von fan der Stelle x" Ls verlockend, aber i.A. falsch

Aber: Vorzeichen von & und f" stimmen immer überein.

Asymptotisches Verhalten

- Geneint ist das Verhalten einer Funktion "am Rand" bzw. "im Unendlichen".
- (1) f: IR-> IR, dann bet-achten wir lim f(x) und lim f(x) x-s-oo
- (2) g:]a; ∞[->IR, dann betrachten wir limg(x) und limg(x) (bzw. lim g(x)) x->at x->at
- (3) h: Ja; b[->R, dann betrachten wir lim h(x) und lim h(x) x >a