Summenregel & Faktorregel

Wir untersuchen die Steigung linearer Funktionen. Vervollständige die Tabelle.

	f(x)	g(x)	f(x) + g(x)	f(x) - g(x)	$3 \cdot f(x)$
Funktionsterm	$4 \cdot x + 2$	$2 \cdot x - 5$			
Steigung					

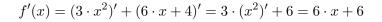
Summenregel & Faktorregel

MmF

Für alle differenzierbaren Funktionen f und g gelten die folgenden Ableitungsregeln:

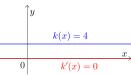
- $s(x) = f(x) \pm g(x) \implies s'(x) = f'(x) \pm g'(x)$ i) Summenregel:
- $m(x) = c \cdot f(x)$ \Longrightarrow $m'(x) = c \cdot f'(x)$ mit $c \in \mathbb{R}$ ii) Faktorregel:

Differenzieren mit Ableitungsregeln



Auf dem Arbeitsblatt – Differentialquotient haben wir die Ableitungsregel $(x^n)' = n \cdot x^{n-1}$ sowie die folgende Ableitungsfunktion direkt aus der Definition ermittelt:

$$f(x) = 3 \cdot x^2 + 6 \cdot x + 4 \implies f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \dots = 6 \cdot x + 6$$


Mit der Summenregel und der Faktorregel können wir diese Ableitungsfunktion schneller ermitteln:

Rechts sind die folgenden beiden Begründungen für $(6 \cdot x + 4)' = 6$ grafisch veranschaulicht:

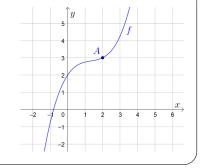
- i) Die lineare Funktion ℓ mit $\ell(x)=6\cdot x+4$ hat an jeder Stelle die Steigung 6. $\implies \ell'(x)=6$
- ii) Die konstante Funktion k mit k(x) = 4 hat an jeder Stelle die Steigung 0. $\implies k'(x) = 0$ $\implies (6 \cdot x + 4)' = 6 \cdot (x^1)' + (4)' = 6 \cdot 1 \cdot x^0 + 0 = 6$

Ableitungen von Polynomfunktionen

Ermittle jeweils die Ableitungsfunktion mithilfe der Ableitungsregeln.

a)
$$a(x) = 3 \cdot x^4 - 2 \cdot x^3 + x^2 - 3 \cdot x + 5$$
 $\implies a'(x) =$

b)
$$b(x) = \frac{5}{3} \cdot x^7 - \frac{3}{8} \cdot x^4 + \frac{1}{4} \cdot x^2 - 3$$
 $\implies b'(x) =$


c)
$$c(x) = \frac{x^6 + x^3 - x}{12}$$
 $\implies c'(x) =$

Tangente an Polynomfunktion

Für die rechts dargestellte Funktion f gilt: $f(x) = \frac{1}{4} \cdot x^3 - x^2 + \frac{3}{2} \cdot x + 2$

- 1) Berechne die Steigung von f an der Stelle x=2.
- 2) Zeichne die zugehörige Tangente im Punkt A rechts ein.

Ableitungen von Potenz- und Wurzelfunktionen

Für die Ableitungsfunktion der Potenzfunktion $f(x) = x^r$ mit $r \in \mathbb{R}$ gilt: $f'(x) = r \cdot x^{r-1}$

Erinnere dich, dass $\frac{1}{x^r} = x^{-r}$ bzw. $\sqrt[n]{x^m} = x^{\frac{m}{n}}$ gilt.

Diese Ableitungsregel kannst du also auch auf alle Wurzelfunktionen anwenden.

Ableitungen von Potenz- und Wurzelfunktionen

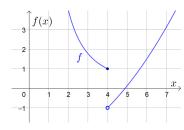
Ermittle jeweils die Ableitungsfunktion mithilfe der Ableitungsregeln.

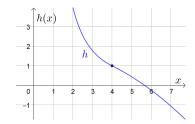
a)
$$a(x) = x^{4,2}$$

b)
$$b(x) = x^{\pi}$$

c)
$$c(x) = \frac{5}{x^2}$$

a)
$$a(x) = x^{4,2}$$
 b) $b(x) = x^{\pi}$ **c)** $c(x) = \frac{5}{x^2}$ **d)** $d(x) = \frac{2}{3 \cdot x}$ **e)** $e(x) = \sqrt{x}$ **f)** $f(x) = \sqrt[4]{x^3}$


$$\mathbf{e)}\ e(x) = \sqrt{x}$$


$$\mathbf{f)} \ f(x) = \sqrt[4]{x}$$

Stetigkeit & Differenzierbarkeit

Die Graphen der Funktionen f, g und h sind dargestellt:

- Die Funktion f ist an der Stelle x = 4 unstetig: Ihr Funktionswert springt dort von 1 auf -1.
- Die Funktion g ist an der Stelle x = 4 stetig, aber nicht differenzierbar: Der Funktionsgraph hat dort einen Knick.
- Die Funktion h ist an der Stelle x=4 stetig und differenzierbar.

Für die Funktion h gilt: $h(x) = \begin{cases} \frac{16}{x^2}, & \text{falls } x \leq 4. \\ a \cdot x^2 + b, & \text{falls } x > 4. \end{cases}$ Berechne a und b.

Ableitungen von Exponential- und Logarithmusfunktionen

Für die Ableitungsfunktion der Exponentialfunktion $f(x) = a^x$ gilt:

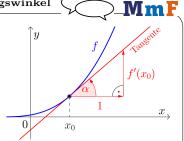
 $f'(x) = a^x \cdot \ln(a)$

Für die Ableitungsfunktion der Logarithmusfunktion $g(x) = \log_a(x)$ gilt: $g'(x) = \frac{1}{x \cdot \ln(a)}$

Wenn die Basis a die Eulersche Zahl $e=2,718\,28...$ ist, dann gilt $\ln(e)=$ und damit:

$$f(x) = e^x \implies f'(x) =$$

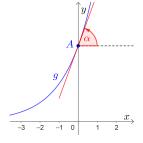
$$g(x) = \ln(x) \implies g'(x) =$$


${\bf Ableitungen\ von\ Exponential}\hbox{--}\ {\bf und\ Logarithmus funktionen}$

Ermittle jeweils die Ableitungsfunktion mithilfe der Ableitungsregeln.

a)
$$f(x) = 4 \cdot e^x - 5 \cdot x^e + \frac{2}{3} \cdot \ln(x)$$
 b) $g(x) = 2 \cdot 3^x - \frac{5}{3^x} + \lg(x)$

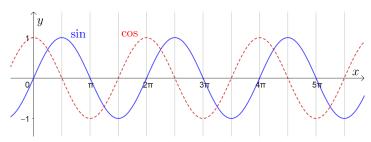
Steigung & Steigungswinkel


Der Graph einer Funktion f ist rechts dargestellt. An der Stelle x_0 ist die Tangente und ein zugehöriges Steigungsdreieck eingezeichnet. Zwischen der Steigung $f'(x_0)$ und dem Steigungswinkel α

Zwischen der Steigung $f'(x_0)$ und dem Steigungswinkel α an der Stelle x_0 besteht also allgemein folgender Zusammenhang:

$$f'(x_0) = \tan(\alpha)$$

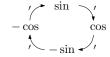
Für die Funktion g gilt: $g(x) = 4 \cdot 2^x$


- 1) Der Graph von g schneidet die senkrechte Achse im Punkt A = (| | | | | | | |). Berechne den Steigungswinkel α im Punkt A.
- 2) Der Steigungswinkel von g im Punkt B beträgt $34,7\,^{\circ}$. Berechne die x-Koordinate von B, und zeichne den Punkt B rechts ein.

Winkelfunktionen

Die Graphen der Sinusfunktion und der Cosinusfunktion sind dargestellt:

Im dargestellten Bereich gilt:


- Die Sinusfunktion nimmt den maximalen Funktionswert 1 an den Stellen $\frac{\pi}{2}$, $\frac{5 \cdot \pi}{2}$ und $\frac{9 \cdot \pi}{2}$ an. Genau an diesen Stellen wechselt das Vorzeichen der Cosinusfunktion von + auf -.
- Die Sinusfunktion nimmt den minimalen Funktionswert -1 an den Stellen $\frac{3 \cdot \pi}{2}$, $\frac{7 \cdot \pi}{2}$ und $\frac{11 \cdot \pi}{2}$ an. Genau an diesen Stellen wechselt das Vorzeichen der Cosinusfunktion von auf +.
- Der Graph der Sinusfunktion geht an den Stellen 0, $2 \cdot \pi$ und $4 \cdot \pi$ am steilsten bergauf. Genau an diesen Stellen hat die Cosinusfunktion ein lokales Maximum.
- Der Graph der Sinusfunktion geht an den Stellen π , $3 \cdot \pi$ und $5 \cdot \pi$ am steilsten bergab. Genau an diesen Stellen hat die Cosinusfunktion ein lokales Minimum.

Ableitungen von Winkelfunktionen

Für die Ableitungsfunktion von $f(x) = \sin(x)$ gilt: $f'(x) = \cos(x)$

Für die Ableitungsfunktion von $g(x) = \cos(x)$ gilt: $g'(x) = -\sin(x)$

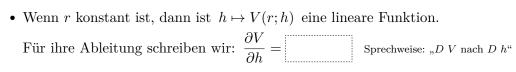
Für die Ableitungsfunktion von $h(x) = \tan(x)$ gilt: $h'(x) = \frac{1}{\cos^2(x)} = 1 + \tan^2(x)$

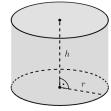
 \bigwedge

Damit diese Ableitungsregeln für Winkelfunktionen stimmen, muss der Winkelx im Bogenmaß gemessen sein.

Ableitungen von Winkelfunktionen

Für die Funktion f gilt: $f(x) = 12.4 \cdot \sin(x)$


Berechne jenen Winkel x (im Bogenmaß) in $[0; \pi]$, an dem f die Steigung 24 % hat.


Partielle Ableitungen

Das Volumen V eines Drehzylinders hängt von seinem Radius r und seiner Höhe h ab:

$$V(r;h) = \pi \cdot r^2 \cdot h$$

• Wenn h konstant ist, dann ist $r \mapsto V(r;h)$ eine quadratische Funktion.

Für ihre Ableitung schreiben wir: $\frac{\partial V}{\partial r} =$

Mehr dazu findest du am AB – Funktionen in mehreren Variablen.

