$a(x) \cdot b(x)$

Patrick behauptet: "Die Ableitung von x^2 ist $2 \cdot x$ und die Ableitung von x^3 ist $3 \cdot x^2$.

Also ist die Ableitung von $x^2 \cdot x^3$ gleich $(2 \cdot x) \cdot (3 \cdot x^2) = 6 \cdot x^3$."

Begründe, warum diese Aussage falsch sein muss.

Es gilt $x^2 \cdot x^3 = x^5$ und damit $(x^2 \cdot x^3)' = (x^5)' = 5 \cdot x^4$.

Da im Allgemeinen $6 \cdot x^3 \neq 5 \cdot x^4$ gilt (z. B. an der Stelle x = 1), muss Patricks Aussage falsch sein.

Produktregel, Quotientenregel & Kettenregel

- Die Ableitungsfunktion von $p(x) = x^2 \cdot \sin(x)$ ist $nicht \ x \mapsto 2 \cdot x \cdot \cos(x)$.
- Die Ableitungsfunktion von $q(x) = \frac{x^2}{\sin(x)}$ ist $nicht \ x \mapsto \frac{2 \cdot x}{\cos(x)}$.
- Die Ableitungsfunktion von $k(x) = \sin(x^2)$ ist $nicht \ x \mapsto \cos(2 \cdot x)$.

Die richtigen Ableitungsfunktionen erhalten wir mit der Produkt-, Quotienten- bzw. Kettenregel.

Die Ableitungsfunktion von $p(x) = a(x) \cdot b(x)$ ermitteln wir mit der **Produktregel**:

$$p'(x) = a'(x) \cdot b(x) + a(x) \cdot b'(x)$$

Zum Beispiel:
$$p(x) = \underbrace{x^2}_{a(x)} \cdot \underbrace{\sin(x)}_{b(x)} \implies p'(x) = \underbrace{2 \cdot x}_{a'(x)} \cdot \underbrace{\sin(x)}_{b(x)} + \underbrace{x^2}_{a(x)} \cdot \underbrace{\cos(x)}_{b'(x)}$$

Produktregel

Ermittle die Ableitungsfunktion von $p(x) = 5 \cdot x^3 \cdot \ln(x)$.

$$p'(x) = 15 \cdot x^2 \cdot \ln(x) + 5 \cdot x^3 \cdot \frac{1}{x} = 15 \cdot x^2 \cdot \ln(x) + 5 \cdot x^2$$

Quotientenregel

Die Ableitungsfunktion von $q(x) = \frac{a(x)}{b(x)}$ ermitteln wir mit der Quotientenregel:

$$q'(x) = \frac{a'(x) \cdot b(x) - a(x) \cdot b'(x)}{b(x)^2}$$

Zum Beispiel:
$$q(x) = \frac{x^2}{\sin(x)} \implies q'(x) = \frac{2 \cdot x \cdot \sin(x) - x^2 \cdot \cos(x)}{\sin^2(x)}$$

Quotientenregel

Ermittle die Ableitungsfunktion von $q(x) = \frac{3 \cdot x - 1}{x^2 + 1}$ und vereinfache so weit wie möglich.

$$q'(x) = \frac{3 \cdot (x^2 + 1) - (3 \cdot x - 1) \cdot 2 \cdot x}{(x^2 + 1)^2} = \frac{3 \cdot x^2 + 3 - 6 \cdot x^2 + 2 \cdot x}{(x^2 + 1)^2} = \frac{-3 \cdot x^2 + 2 \cdot x + 3}{(x^2 + 1)^2}$$

Kettenregel

Die Ableitungsfunktion von k(x) = f(g(x)) ermitteln wir mit der **Kettenregel**:

$$k'(x) = f'(g(x)) \cdot g'(x)$$

Zum Beispiel:
$$k(x) = \sin(x^2) \implies k'(x) = \cos(x^2) \cdot 2 \cdot x$$

Bei dieser Funktion k steckt nämlich eine quadratische Funktion in der Sinusfunktion:

Äußere Funktion:
$$f(©) = \sin(©) \implies f'(©) = \cos(©)$$

Innere Funktion: $g(x) = x^2 \implies g'(x) = 2 \cdot x$

$$k(x) = f(g(x)) = \sin(x^2) \implies k'(x) = f'(g(x)) \cdot g'(x) = \cos(x^2) \cdot 2 \cdot x$$

Ermittle die Ableitungsfunktion von $k(x) = \ln(4 \cdot x^2 - 5 \cdot x + 4)$.

$$k'(x) = \frac{1}{4 \cdot x^2 - 5 \cdot x + 4} \cdot (8 \cdot x - 5) = \frac{8 \cdot x - 5}{4 \cdot x^2 - 5 \cdot x + 4}$$

Ermittle die Ableitungsfunktion von $f(x) = (4 \cdot x - 2)^2 \dots$

1) ... mit der Kettenregel. 2) ... mit der Produktregel. 3) ... indem du zuerst ausmultiplizierst.

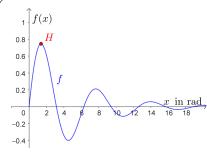
1)
$$f(x) = (4 \cdot x - 2)^2$$
 \sim Kettenregel
 $\implies f'(x) = 2 \cdot (4 \cdot x - 2)^1 \cdot 4 = 32 \cdot x - 16$

2)
$$f(x) = (4 \cdot x - 2) \cdot (4 \cdot x - 2)$$
 \rightarrow Produktregel $\implies f'(x) = 4 \cdot (4 \cdot x - 2) + (4 \cdot x - 2) \cdot 4 = 16 \cdot x - 8 + 16 \cdot x - 8 = 32 \cdot x - 16$

3)
$$f(x) = 16 \cdot x^2 - 16 \cdot x + 4$$

 $\implies f'(x) = 32 \cdot x - 16$

Gedämpfte Schwingung



Für die links dargestellte Funktion f gilt: $f(x) = \sin(x) \cdot e^{-0.2 \cdot x}$

- 1) Ermittle die Ableitungsfunktion von f.
- 2) Berechne die Koordinaten vom eingezeichneten Hochpunkt H.

1)
$$f'(x) = \cos(x) \cdot e^{-0.2 \cdot x} + \sin(x) \cdot e^{-0.2 \cdot x} \cdot (-0.2) =$$

= $e^{-0.2 \cdot x} \cdot [\cos(x) - 0.2 \cdot \sin(x)]$

2) Aus dem Produkt-Null-Satz und $e^{-0.2 \cdot x} > 0$ folgt:

$$f'(x) = 0 \iff \cos(x) - 0.2 \cdot \sin(x) = 0$$

Wir verwenden $\tan(x) = \frac{\sin(x)}{\cos(x)}$, um diese goniometrische Gleichung zu lösen:

$$\cos(x) - 0.2 \cdot \sin(x) = 0 \iff \cos(x) = 0.2 \cdot \sin(x) \iff \frac{1}{0.2} = \tan(x)$$

$$\implies x_H = \arctan\left(\frac{1}{0.2}\right) = 1,373... \text{ rad} \implies y_H = f(1,373...) = 0,745...$$

