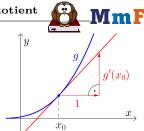
Differentialquotient

Der Differentialquotient

$$g'(x_0) = \lim_{x \to x_0} \frac{g(x) - g(x_0)}{x - x_0} = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h}$$

ist die Steigung der Funktion g an der Stelle x_0 .



Grenzwert einer Funktion an einer Stelle

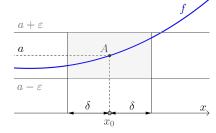
Für den Grenzwert der Funktion f an der Stelle x_0 schreiben wir kurz: $\lim_{x\to x_0} f(x)$

Wenn wir $\lim_{x\to x_0} f(x) = a$ schreiben, meinen wir:

Zu jeder Fehlertoleranz $\varepsilon > 0$ gibt es eine Zahl $\delta > 0$ so, dass

$$a - \varepsilon < f(x) < a + \varepsilon$$

für alle x in $]x_0 - \delta; x_0 + \delta[$ mit $x \neq x_0$ gilt.



 $\lim_{x\to x_0} f(x) = f(x_0)$ bedeutet, dass die Funktion f stetig an der Stelle x_0 ist.

Ableitungsfunktion von $f(x) = x^2$

Der Graph der quadratischen Funktion f mit $f(x) = x^2$ verläuft durch die Punkte $A = (x_0 \mid f(x_0))$ und $B = (x_0 + h \mid f(x_0 + h))$ mit $h \neq 0$. Für die Steigung der Gerade durch A und B gilt:

$$\frac{f(x_0+h)-f(x_0)}{h} = \frac{(x_0+h)^2 - x_0^2}{h} = \frac{x_0^2 + 2 \cdot x_0 \cdot h + h^2 - x_0^2}{h} = \frac{h \cdot (2 \cdot x_0 + h)}{h} = 2 \cdot x_0 + h$$

Beim Kürzen dividieren wir Zähler und Nenner durch $h \neq 0.$

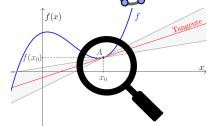
- i) Für diese Funktion f sind die Terme $\frac{f(x_0+h)-f(x_0)}{h}$ und $2\cdot x_0+h$ für alle $h\neq 0$ äquivalent.
- ii) Die Funktion $h \mapsto 2 \cdot x_0 + h$ ist als lineare Funktion stetig.

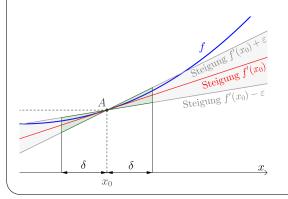
Deshalb gilt: $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \stackrel{\mathbf{i}}{=} \lim_{h \to 0} (2 \cdot x_0 + h) \stackrel{\mathbf{ii}}{=} 2 \cdot x_0$

Geometrische Interpretation von Differenzierbarkeit

Wenn f an der Stelle x_0 differenzierbar ist, dann gibt es eine Zahl $f'(x_0)$ mit folgender Eigenschaft:

Wir zeichnen die Gerade mit Steigung $f'(x_0)$ durch den Punkt $A = (x_0 \mid f(x_0))$, also die Tangente im Punkt A.





Uns wird eine beliebige, kleine Zahl $\varepsilon > 0$ vorgegeben.

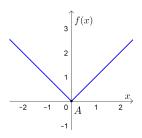
Wir zeichnen durch den Punkt A die beiden Geraden mit Steigung $f'(x_0) - \varepsilon$ und mit Steigung $f'(x_0) + \varepsilon$. Diese Geraden bilden den dargestellten schmalen Keil.

Zu jeder Fehlertoleranz $\varepsilon > 0$ finden wir ein $\delta > 0$ so, dass der Graph von f im Intervall $]x_0 - \delta; x_0 + \delta[$ vollständig im links grün dargestellten Keil verläuft.

Wie kann eine Funktion nicht differenzierbar sein?

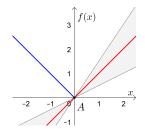
Es gibt auch Funktionen, bei denen der Grenzwert $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$ nicht an jeder Stelle existiert.

a) Die Betragsfunktion f mit f(x) = |x| ist an der Stelle $x_0 = 0$ nicht differenzierbar:



Egal, wie wir versuchen eine Tangente im Punkt $A=(0\mid 0)$ zu legen, der Funktionsgraph verlässt den Keil mit $\varepsilon=0.5$ links oder rechts von 0.

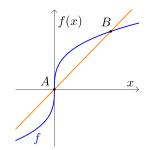
Solche Stellen nennt man Knickstellen.



b) Die Kubikwurzelfunktion f mit $f(x) = \sqrt[3]{x}$ ist an der Stelle $x_0 = 0$ nicht differenzierbar:

Was passiert mit der Steigung der Sekante, wenn der Punkt B entlang des Graphen immer weiter in Richtung Punkt A rutscht?

Zu jeder noch so steilen Gerade durch $(0 \mid 0)$ gibt es einen Keil, den der Funktionsgraph verlässt. Die Gerade müsste senkrecht sein.



Geometrische Interpretation von Differenzierbarkeit

Die geometrische Interpretation von Differenzierbarkeit folgt aus der Definition für den Grenzwert von $x \mapsto \frac{f(x) - f(x_0)}{x - x_0}$ an der Stelle x_0 . Wenn dieser Grenzwert $f'(x_0)$ existiert, dann gilt:

$$f'(x_0) - \varepsilon < \frac{f(x) - f(x_0)}{x - x_0} < f'(x_0) + \varepsilon$$
 für jede Stelle x mit $x_0 - \delta < x < x_0 + \delta$ und $x \neq x_0$

Wir formen diese Ungleichungskette so um, dass f(x) in der Mitte stehen bleibt.

Beim Multiplizieren mit $x - x_0$ unterscheiden wir die Fälle i) $x > x_0$ und ii) $x < x_0$.

i)
$$(f'(x_0) - \varepsilon) \cdot (x - x_0) + f(x_0) < f(x) < (f'(x_0) + \varepsilon) \cdot (x - x_0) + f(x_0)$$
 für alle $x \in]x_0; x_0 + \delta[x_0] + f(x_0)$

ii)
$$(f'(x_0) - \varepsilon) \cdot (x - x_0) + f(x_0) > f(x) > (f'(x_0) + \varepsilon) \cdot (x - x_0) + f(x_0)$$
 für alle $x \in]x_0 - \delta; x_0[$

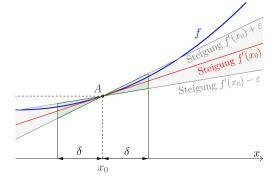
Erinnere dich, dass $y = k \cdot (x - x_0) + y_0$ eine Gerade mit Steigung k festlegt, die durch den Punkt $(x_0 | y_0)$ verläuft.

Die Gleichungen

$$y = (f'(x_0) - \varepsilon) \cdot (x - x_0) + f(x_0) \text{ bzw.}$$

$$y = (f'(x_0) + \varepsilon) \cdot (x - x_0) + f(x_0)$$

legen also genau jene Geraden fest, die den Keil oben und unten beranden.



Die Ungleichungen i) und ii) bedeuten also genau, dass der Graph von f im Intervall $]x_0 - \delta; x_0 + \delta[$ vollständig im grün dargestellten Keil verläuft.

