Kartesisches Koordinatensystem

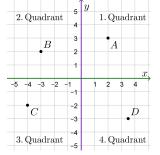
Rechts siehst du, wie die **Zahlenebene** durch 2 Achsen in 4 Quadranten unterteilt wird.

Die waagrechte Achse heißt auch x-Achse, horizontale Achse, 1. Achse oder Abszisse.

Die senkrechte Achse heißt auch y-Achse, vertikale Achse, 2. Achse oder Ordinate.

Jeder Punkt in der Zahlenebene wird eindeutig durch Angabe seiner beiden **Koordinaten** festgelegt. Zum Beispiel:

$$A = (2 \mid 3)$$
 $B = (-3 \mid 2)$ $C = (-4 \mid -2)$ $D = (3.5 \mid -3)$



Die Menge aller Zahlenpaare $(x \mid y)$ mit reellen Zahlen x und y wird mit \mathbb{R}^2 abgekürzt.

Lineare Gleichungen in 2 Variablen

In der Gleichung $y = 2 \cdot x + 1$ kommen zwei Variablen vor, nämlich x und y.

Die Gleichung $y = 2 \cdot x + 1$ ist eine Bedingung an die Zahlen x und y.

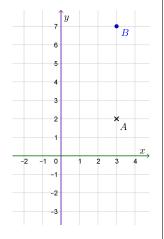
Wir suchen nach Zahlenpaaren, die diese Bedingung erfüllen:

 $A=(3\mid 2)$ ist keine Lösung der Gleichung, weil $2\neq 2\cdot 3+1$.

 $B = (3 \mid 7)$ ist eine **Lösung** der Gleichung, weil $7 = 2 \cdot 3 + 1$.

In einer **Wertetabelle** tragen wir weitere Lösungen der Gleichung ein. Ergänze die Koordinaten so, dass die Zahlenpaare Lösungen sind.

x	-2	-1	0	1	2	
y						6



Zeichne diese Lösungen als Punkte im Koordinatensystem rechts ein.

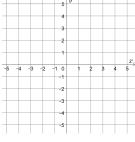
Tatsächlich hat jede lineare Gleichung $y = k \cdot x + d$ unendlich viele Lösungen, und die Lösungen liegen auf einer Gerade.

Die Lösungsmenge besteht aus allen Lösungen der Gleichung.

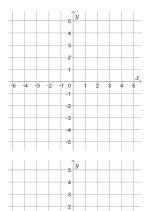
Versprachlichung

Beschreibe in Worten, welche Zahlenpaare $(x \mid y)$ Lösungen der gegebenen Gleichung sind. Stelle die Lösungsmenge in der Zahlenebene grafisch dar.

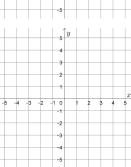
$$\mathbf{a)} \ y = x$$



b)
$$y = -x$$



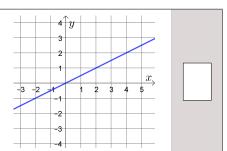
c) y = 2

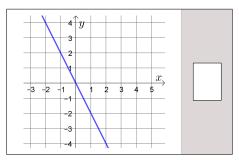


d)
$$x = 4$$

Steigung

Ordne den beiden dargestellten Geraden jeweils die passende Gleichung aus A bis D zu.





A	$y = 2 \cdot x$
В	$y = \frac{1}{2} \cdot x$
C	$y = -2 \cdot x$
D	$y = -\frac{1}{2} \cdot x$

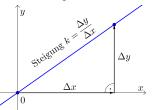
Einfluss des Parameters k

Die Lösungsmenge von $y = k \cdot x$ ist genau jene Gerade, die ...

1) durch den Punkt (0 | 0) verläuft und

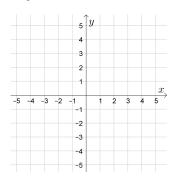
- $0 = k \cdot 0$
- 2) die Steigung k hat. Wenn x um 1 größer wird, dann muss y um k größer werden. \checkmark

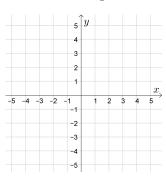
In diesem Fall sind die Größen x und y zueinander direkt proportional.

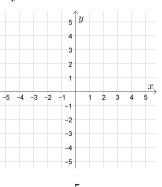


 ${\bf Gleichung} \, \to \, {\bf Ursprungsgerade}$

Zeichne jeweils die Gerade mit der gegebenen Gleichung in das Koordinatensystem ein.







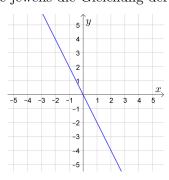
$$y = 3 \cdot x$$

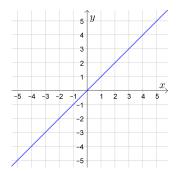
$$y = -x$$

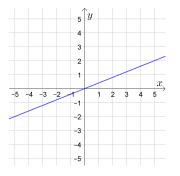
$$y = -\frac{5}{3} \cdot x$$

 ${\bf Ursprungsgerade} \, \to \, {\bf Gleichung}$

Stelle jeweils die Gleichung der dargestellten Gerade auf.





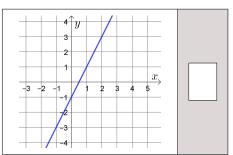


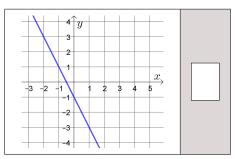
$$y =$$

$$y =$$

Steigung & y-Achsenabschnitt

Ordne den beiden dargestellten Geraden jeweils die passende Gleichung aus A bis D zu.





A	$y = 2 \cdot x + 1$
B	$y = 2 \cdot x - 1$
C	$y = -2 \cdot x + 1$
D	$y = -2 \cdot x - 1$

Einfluss des Parameters d

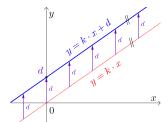
Die Lösungsmenge von $y = k \cdot x + d$ ist genau jene Gerade, die . . .

1) durch den Punkt (0 | d) verläuft und

- $d = k \cdot 0 + d \ \checkmark$
- 2) die Steigung k hat. Wenn x um 1 größer wird, dann muss y um k größer werden. \checkmark

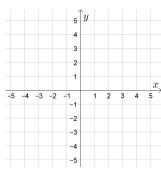
Die Zahl d heißt auch y-Achsenabschnitt oder Ordinatenabschnitt.

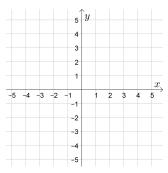
Die beiden Parameter k und d legen gemeinsam jede Gerade in der Ebene, die nicht senkrecht ist, eindeutig fest.



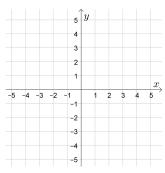
 $\mathbf{Gleichung} \, \to \, \mathbf{Gerade}$

Zeichne jeweils die Gerade mit der gegebenen Gleichung in das Koordinatensystem ein.





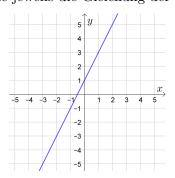
$$y = -\frac{1}{2} \cdot x + 2$$



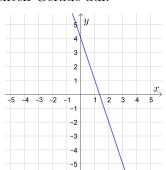
$$y = \frac{2}{5} \cdot x - 3$$

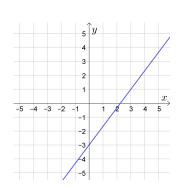
 $\mathbf{Gerade} \to \mathbf{Gleichung}$

Stelle jeweils die Gleichung der dargestellten Gerade auf.



$$y =$$





$$y =$$

Punkt und Steigung

Eine Gerade verläuft durch den Punkt $(4 \mid 2)$ und hat die Steigung $-\frac{3}{2}$. Ermittle ihre Gleichung $y = k \cdot x + d$.

Zwei Punkte

Eine Gerade verläuft durch die Punkte $(-3\mid 5)$ und $(4\mid -1)$. Ermittle ihre Gleichung $y=k\cdot x+d$.

Lösungsweg 1: Zuerst die Steigung k der Gerade berechnen und dann den Punkt d in die Gleichung einsetzen.

Lösungsweg 2: Die beiden Punkte in die Gleichung einsetzen und dann das Gleichungssystem in den Variablen k und d lösen.

Am Ende des Arbeitsblatts findest du noch einen weiteren Lösungsweg.

Äquivalenzumformungen

Erinnere dich, dass Äquivalenzumformungen die Lösungsmenge einer Gleichung nicht verändern.

Jede der folgenden Gleichungen hat also die gleiche Lösungsmenge:

1)
$$\frac{y-3}{2} = x$$
 | $\cdot 2$

2)
$$y - 3 = 2 \cdot x + 3$$

3)
$$y = 2 \cdot x + 3$$

Stelle diese Lösungsmenge rechts grafisch dar.

Funktionsform

Zeige durch Umformen nach y, dass die Lösungen von $\frac{4-x}{2} = \frac{y+5}{5}$ auf einer Gerade liegen.

Stelle diese Lösungen rechts grafisch dar.

Allgemeine Form

Die Geradengleichung $4 \cdot x - 3 \cdot y = 17$ ist in **allgemeiner Form**.

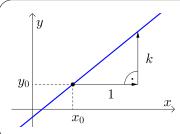
 $a \cdot x + b \cdot y = c$

1) Forme die Gleichung in die Form $y = k \cdot x + d$ um. Welche Steigung hat diese Gerade also?

2) In welchen Punkten schneidet die Gerade die waagrechte Achse bzw. die senkrechte Achse?

3) Gegeben sind die Punkte $A = (5 \mid 1)$, $B = (3 \mid -2)$ und $C = (-1 \mid -6)$. Begründe für jeden Punkt, ob er oberhalb, unterhalb oder auf der Gerade liegt.

Punkt & Steigung



Die Gerade mit der Gleichung

$$y = k \cdot (x - x_0) + y_0$$

hat die Steigung k und verläuft durch den Punkt $(x_0 \mid y_0)$. Siehst du der Gleichung diese beiden Eigenschaften an?

Punkt & Steigung

Eine Gerade verläuft durch den Punkt $(4 \mid -2)$ und hat die Steigung k = -3. Stelle eine Gleichung der Gerade auf.

Lösungsweg 1: $y = k \cdot x + d$

Lösungsweg 2: $y = k \cdot (x - x_0) + y_0$

