Sinus am Einheitskreis

Die Gleichung $\sin(\alpha) = 0.6$ hat zwei Lösungen $\alpha \in [0^{\circ}; 360^{\circ}[$, weil $\sin(\alpha) = \sin(180^{\circ} - \alpha)$ gilt.

Diesmal messen wir die Winkel im Bogenmaß.

Dann hat die Gleichung $\sin(x) = 0.6$ dementsprechend zwei Lösungen $x \in [0 \text{ rad}; 2 \cdot \pi \text{ rad}]$.

1) Der rechts eingezeichnete Winkel x_1 ist eine Lösung.

Es gilt: $x_1 =$ rad

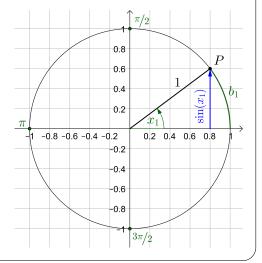
Der zugehörige Winkelbogen am Einheitskreis hat also die Länge $b_1 =$

2) Zeichne den zweiten Winkel x_2 ein, der die Gleichung löst.

Wenn die Winkel im Bogenmaß gemessen sind, dann gilt:

$$\sin(x) = \sin(\pi - x)$$

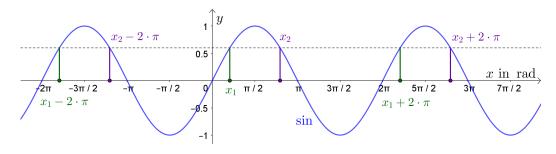
3) Für die zweite Lösung x_2 gilt also: $x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ rad



Sinusfunktion

Tatsächlich hat die Gleichung $\sin(x) = 0.6$ über der Grundmenge \mathbb{R} unendlich viele Lösungen.

Der Graph der Sinusfunktion f mit $f(x) = \sin(x)$ ist dargestellt:



Die waagrechte strichlierte Gerade hat die Gleichung y = 0.6.

Die Schnittstellen dieser Gerade mit dem Graphen sind also die Lösungen der Gleichung $\sin(x) = 0.6$.

1) Für die eingezeichnete Lösung x_1 gilt: $x_1 =$

Nach jeder vollständigen Umdrehung am Einheitskreis ist der Sinuswert wieder gleich groß. Neben x_1 sind also auch folgende Winkel Lösungen:

$$x_1+2\cdot\pi,\quad x_1+4\cdot\pi,\quad x_1+6\cdot\pi,\dots$$
 sowie $x_1-2\cdot\pi,\quad x_1-4\cdot\pi,\quad x_1-6\cdot\pi,\dots$

Diese unendlich vielen Lösungen können wir kurz so anschreiben:

$$x_{1,k} = x_1 + k \cdot 2 \cdot \pi = + k \cdot 2 \cdot \pi \text{ rad}, \quad k \in \mathbb{Z}$$

"Bergauf-Lösungen"

2) Für die eingezeichnete Lösung x_2 gilt: $x_2 =$ rad

Die zweite Hälfte der Lösungen ist also:

$$x_{2,k} = x_2 + k \cdot 2 \cdot \pi =$$
 $+ k \cdot 2 \cdot \pi \text{ rad}, \quad k \in \mathbb{Z}$

"Bergab-Lösungen"

Cosinus am Einheitskreis

Die Gleichung $\cos(\alpha) = 0.8$ hat zwei Lösungen $\alpha \in [0^\circ; 360^\circ]$, weil $\cos(\alpha) = \cos(360^\circ - \alpha)$ gilt.

Diesmal messen wir die Winkel im Bogenmaß.

Dann hat die Gleichung $\cos(x) = 0.8$ dementsprechend zwei Lösungen $x \in [0 \text{ rad}; 2 \cdot \pi \text{ rad}]$.

1) Der rechts eingezeichnete Winkel x_1 ist eine Lösung.

Es gilt: $x_1 =$

Der zugehörige Winkelbogen am Einheitskreis

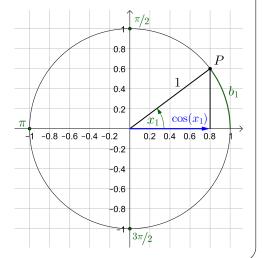
hat also die Länge $b_1 =$

2) Zeichne den zweiten Winkel x_2 ein, der die Gleichung löst.

Wenn die Winkel im Bogenmaß gemessen sind, dann gilt:

$$\cos(x) = \cos\left(2 \cdot \pi - x\right)$$

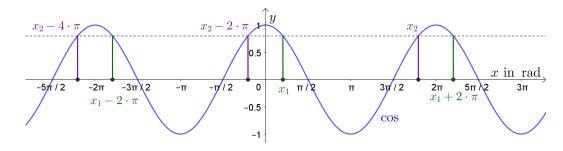
3) Für die zweite Lösung x_2 gilt also: $x_2 =$



Cosinus funktion

Tatsächlich hat die Gleichung $\cos(x) = 0.8$ über der Grundmenge \mathbb{R} unendlich viele Lösungen.

Der Graph der Cosinusfunktion f mit $f(x) = \cos(x)$ ist dargestellt:



Die waagrechte strichlierte Gerade hat die Gleichung y = 0.8.

Die Schnittstellen dieser Gerade mit dem Graphen sind also die Lösungen der Gleichung $\cos(x) = 0.8$.

1) Für die eingezeichnete Lösung x_1 gilt: $x_1 =$ rad

Nach jeder vollständigen Umdrehung am Einheitskreis ist der Cosinuswert wieder gleich groß. Neben x_1 sind also auch folgende Winkel Lösungen:

$$x_1+2\cdot\pi,\quad x_1+4\cdot\pi,\quad x_1+6\cdot\pi,\dots$$
 sowie $x_1-2\cdot\pi,\quad x_1-4\cdot\pi,\quad x_1-6\cdot\pi,\dots$

Diese unendlich vielen Lösungen können wir kurz so anschreiben:

$$x_{1,k} = x_1 + k \cdot 2 \cdot \pi = + k \cdot 2 \cdot \pi \text{ rad}, \quad k \in \mathbb{Z}$$

"Bergab-Lösungen"

2) Für die eingezeichnete Lösung x_2 gilt: $x_2 = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ rad

Die zweite Hälfte der Lösungen ist also:

$$x_{2,k} = x_2 + k \cdot 2 \cdot \pi = + k \cdot 2 \cdot \pi \text{ rad}, \quad k \in \mathbb{Z}$$

"Bergauf-Lösungen"

Tangens am Einheitskreis (

Die Gleichung $\tan(\alpha) = 0.6$ hat zwei Lösungen $\alpha \in [0^{\circ}; 360^{\circ}[$, weil $\tan(\alpha) = \tan(180^{\circ} + \alpha)$ gilt.

Diesmal messen wir die Winkel im Bogenmaß.

Dann hat die Gleichung $\tan(x) = 0.6$ dementsprechend zwei Lösungen $x \in [0 \text{ rad}; 2 \cdot \pi \text{ rad}]$.

1) Der rechts eingezeichnete Winkel x_1 ist eine Lösung.

Es gilt: $x_1 =$ rad

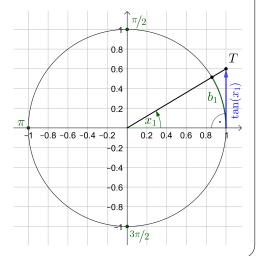
Der zugehörige Winkelbogen am Einheitskreis hat also die Länge $b_1 =$

2) Zeichne den zweiten Winkel x_2 ein, der die Gleichung löst.

Wenn die Winkel im Bogenmaß gemessen sind, dann gilt:

$$\tan(x) = \tan(\pi + x)$$

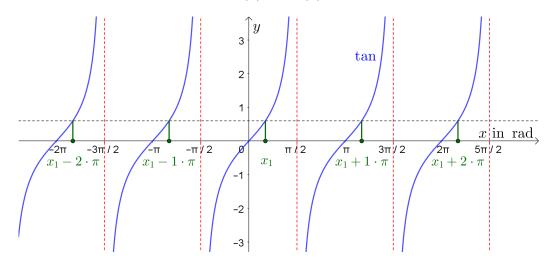
3) Für die zweite Lösung x_2 gilt also: $x_2 =$



Tangensfunktion

Tatsächlich hat die Gleichung $\tan(x) = 0.6$ über der Grundmenge $\mathbb R$ unendlich viele Lösungen.

Der Graph der Tangensfunktion f mit $f(x) = \tan(x)$ ist dargestellt:



Die waagrechte strichlierte Gerade hat die Gleichung y = 0.6.

Die Schnittstellen dieser Gerade mit dem Graphen sind also die Lösungen der Gleichung $\tan(x) = 0.6$.

Für die eingezeichnete Lösung x_1 gilt: $x_1 = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$ rad

Nach jeder halben Umdrehung am Einheitskreis ist der Tangenswert wieder gleich groß.

Neben x_1 sind also auch folgende Winkel Lösungen:

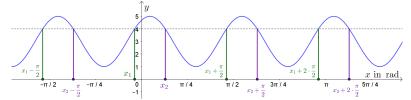
$$x_1 + 1 \cdot \pi$$
, $x_1 + 2 \cdot \pi$, $x_1 + 3 \cdot \pi$,... sowie $x_1 - 1 \cdot \pi$, $x_1 - 2 \cdot \pi$, $x_1 - 3 \cdot \pi$,...

Diese unendlich vielen Lösungen können wir kurz so anschreiben:

$$x_{1,k} = x_1 + k \cdot \pi = + k \cdot \pi \text{ rad}, \quad k \in \mathbb{Z}$$

Goniometrische Gleichungen lösen

Der Graph der allgemeinen Sinusfunktion f mit $f(x) = 2 \cdot \sin(4 \cdot x + 1) + 3$ ist dargestellt.



Die Gleichung $2 \cdot \sin(4 \cdot x + 1) + 3 = 4$ kannst du über der Grundmenge $\mathbb R$ folgendermaßen lösen:

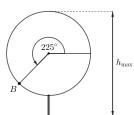
- 1) Forme die Gleichung auf $sin(\mathfrak{D}) = \mathfrak{D}$ um.
- 2) Berechne die Lösungen $x_{1,k}$ der Gleichung aus $\odot = \arcsin(\heartsuit) + k \cdot 2 \cdot \pi$.

$$\implies x_{1,k} = \boxed{ + k \cdot }$$
rad

3) Berechne die Lösungen $x_{2,k}$ der Gleichung aus $\mathfrak{Q} = \pi - \arcsin(\mathfrak{Q}) + k \cdot 2 \cdot \pi$.

$$\implies x_{2,k} = +k \cdot$$
 rad

Ben fährt in einem Riesenrad, das sich mit konstanter Geschwindigkeit gegen den Uhrzeigersinn dreht.



- Das Riesenrad hat den Durchmesser $d=40\,\mathrm{m}$.
- Die Höhe des Riesenrads beträgt $h_{\rm max} = 50\,{\rm m}$.
- Eine vollständige Umdrehung des Riesenrads dauert 3 Minuten.
- Zum Zeitpunkt t = 0 ist Ben im dargestellten Punkt B am Riesenrad.

Erinnere dich an die Zeigerdiagramme für allgemeine Sinusfunktionen.

Für Bens Höhe h (in Metern) zum Zeitpunkt t (in Minuten) gilt also: $h(t) = A \cdot \sin(\omega \cdot t + \varphi) + c$

1) Ermittle die Parameter A, ω , φ und c.

Winkel im Bogenmaß

2) Wie viele Sekunden ist Ben während einer Umdrehung mindestens 42 m über dem Boden?

