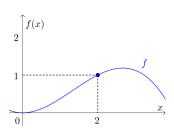
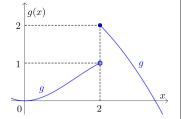
Grundvorstellung zur Stetigkeit

Stetigkeit: "Kleine Veränderungen in x-Richtung bewirken kleine Veränderungen in y-Richtung."



Wie ändern sich links die Funktionswerte von f, wenn wir uns $ein\ bisschen$ von der Stelle x=2 nach links oder nach rechts bewegen?

Wie ändern sich rechts die Funktionswerte von g, wenn wir uns $ein\ bisschen$ von der Stelle x=2 nach links oder nach rechts bewegen?



Die Funktion f ist **stetig** an der Stelle x = 2.

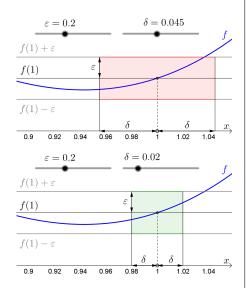
Die Funktion g ist **unstetig** an der Stelle x = 2.

Stetigkeit

Stetigkeit ist in der Mathematik exakt definiert:

Die rechts dargestellte Funktion f ist stetig an der Stelle $x_0=1$. Das heißt, wir können stets das folgende Spiel gewinnen:

- 1) Unser Gegner legt eine Fehlertoleranz $\varepsilon > 0$ fest. In den Bildern rechts ist zum Beispiel $\varepsilon = 0,2$.
- 2) Danach wählen wir einen Spielraum $\delta>0$. Im Bild oben ist $\delta=0.045$. Im Bild unten ist $\delta=0.02$.
- 3) Die Fehlertoleranz ε und der Spielraum δ legen wie rechts dargestellt ein Rechteck mit Mittelpunkt $(1 \mid f(1))$, Breite $2 \cdot \delta$ und Höhe $2 \cdot \varepsilon$ fest.
- 4) Liegt an jeder Stelle x in $]1 \delta; 1 + \delta[$ der zugehörige Funktionswert f(x) in $]f(1) \varepsilon; f(1) + \varepsilon[$, dann gewinnt unser Spielraum δ gegen die vorgegebene Fehlertoleranz ε . In diesem Spiel gewinnt also $\delta = 0.02$ gegen $\varepsilon = 0.2$.



Wenn es an der Stelle x_0 zu jeder noch so kleinen positiven Fehlertoleranz ε einen passenden positiven Spielraum δ gibt, dann ist die Funktion an der Stelle x_0 stetig.

Stetigkeit

Genau dann, wenn die Funktion f stetig an der Stelle x_0 ist, schreiben wir:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Wenn die Funktion f an jeder Stelle x_0 stetig ist, dann ist f eine **stetige Funktion**.

Der Ausdruck $\lim_{x \to x_0} f(x)$ ist der sogenannte Grenzwert der Funktion f an der Stelle x_0 . Beim Versuch, diesen Grenzwert zu ermitteln,

können neben Stetigkeit – also $\lim_{x \to x_0} f(x) = f(x_0)$ – auch noch einige andere Fälle eintreten.

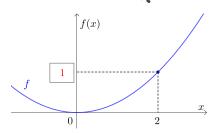
Mehr dazu findest du auf dem Arbeitsblatt - Grenzwert von Funktionen II.

Stetigkeit

Die rechts dargestellte Funktion f mit $f(x) = \frac{x^2}{4}$ ist stetig an der Stelle $x_0 = 2$. Ermittle ihren Grenzwert an dieser Stelle:

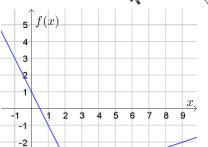
$$\lim_{x \to 2} f(x) = f(2) = \frac{2^2}{4} = 1$$

Trage rechts die richtige Zahl in das Kästchen ein.



Stückweise definierte Funktion

Für die Funktion f gilt: $f(x) = \begin{cases} -2 \cdot x + a, & \text{falls } x < 2, \\ -3, & \text{falls } 2 \le x \le 6, \\ \frac{1}{3} \cdot x + b, & \text{falls } x > 6. \end{cases}$



- a) Berechne die Zahlen a und b so, dass die Funktion f stetig ist.
- b) Zeichne rechts den Funktionsgraphen ein.

$$f(2) = -3 \implies -4 + a = -3 \implies a = 1$$

$$f(6) = -3 \implies 2 + b = -3 \implies b = -5$$

-3

Die **elementaren Funktionen** sind – überall dort, wo sie definiert sind – **stetig**. Dazu zählen:

- 1) Polynomfunktionen: $f(x) = 4 \cdot x^5 5 \cdot x^3 + 2 \cdot x + 42$ mit Definitionsmenge $D = \mathbb{R}$
- 2) Potenzfunktionen: $p(x) = x^{-2} = \frac{1}{x^2}$ mit Definitionsmenge $D = \mathbb{R} \setminus \{0\}$
- 3) Wurzelfunktionen: $w(x) = x^{\frac{5}{4}} = \sqrt[4]{x^5}$ mit Definitionsmenge $D = \mathbb{R}^+$
- 4) Exponential funktionen: $e(x) = 4^x$ mit Definitionsmenge $D = \mathbb{R}$
- 5) Logarithmusfunktionen: $\ell(x) = \log_4(x)$ mit Definitionsmenge $D = \mathbb{R}^+$
- 6) Winkelfunktionen: $s(x) = \sin(x)$ mit Definitionsmenge $D = \mathbb{R}$
- 7) Arkusfunktionen: $a(x) = \arcsin(x)$ mit Definitionsmenge D = [-1; 1]

Wenn f und g stetige Funktionen sind, dann sind auch ihre **Summe**, ihre **Differenz**, ihr **Produkt**, ihr **Quotient** und ihre **Verkettung** wieder im gesamten Definitionsbereich **stetig**.

${\bf Baukasten prinzip}$

Die Funktionen f mit $f(x) = \sqrt{x}$ und g mit g(x) = x - 1 sind als elementare Funktionen stetig.

- a) Die Funktion s mit $s(x) = \sqrt{x} + x 1$ ist als Summe stetiger Funktionen auch stetig. Die Funktion s ist für alle $x \ge 0$ definiert.
- **b)** Die Funktion d mit $d(x) = \sqrt{x} x + 1$ ist als Differenz stetiger Funktionen auch stetig. Die Funktion d ist für alle $x \ge 0$ definiert.
- c) Die Funktion p mit $p(x) = \sqrt{x} \cdot (x-1)$ ist als Produkt stetiger Funktionen auch stetig. Die Funktion p ist für alle $x \ge 0$ definiert.
- d) Die Funktion q mit $q(x) = \frac{\sqrt{x}}{x-1}$ ist als Quotient stetiger Funktionen auch stetig. Die Funktion q ist für alle $x \ge 0$ außer x = 1 definiert.
- e) Die Funktion k mit $k(x) = \sqrt{x-1}$ ist als Verkettung stetiger Funktionen auch stetig. Die Funktion k ist für alle $x \ge 1$ definiert.

Polstelle

Die Funktion f mit $f(x) = \frac{3}{x-4}$ ist für alle $x \in \mathbb{R}$ definiert außer für x = 4.

Streiche jeweils die falsche Antwort durch:

i) Wenn x "ein bisschen" größer als 4 ist, dann ist f(x) eine positive $\frac{1}{x}$ negative und betragsmäßig "sehr große" / "sehr kleine" Zahl.

 $\frac{3}{0,00001}$

ii) Wenn x "ein bisschen" kleiner als 4 ist, dann ist f(x) eine positive / negative und betragsmäßig "sehr große" / "sehr kleine" Zahl.

 $\frac{3}{-0,00001}$

Der Graph der Funktion f ist rechts dargestellt.

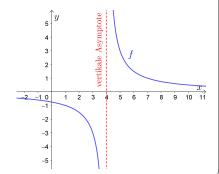
Die Stelle x = 4 nennt man eine **Polstelle** von f.

Die strichlierte senkrechte Gerade durch die Polstelle nennt man eine **vertikale Asymptote** von f.

Der rechtsseitige Grenzwert an der Stelle x=4 ist $\lim_{x\to a} f(x) = \infty$.

Der linksseitige Grenzwert an der Stelle x=4 ist $\lim_{x\to 4-} f(x) = -\infty$.

Mehr dazu findest du auf dem Arbeitsblatt - Grenzwert von Funktionen II.



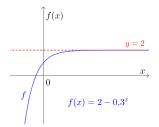
Asymptotisches Verhalten

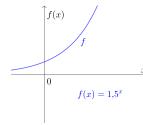
Beim asymptotischen Verhalten einer Funktion f untersuchen wir ihre Funktionswerte f(x), wenn x gegen unendlich geht $(x \to \infty)$ bzw. x gegen minus unendlich geht $(x \to -\infty)$.

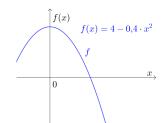
Dabei tritt jeweils genau einer der 4 folgenden Fälle ein:

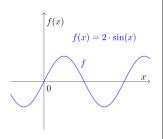
- i) $\lim_{x \to \infty} f(x) = c$ ii) $\lim_{x \to \infty} f(x) = \infty$ iii) $\lim_{x \to \infty} f(x) = -\infty$ iv) $\lim_{x \to \infty} f(x)$ Kurz: $f(x) \to c$ Kurz: $f(x) \to \infty$ Kurz: $f(x) \to -\infty$ existient $f(x) \to \infty$

existiert *nicht*.









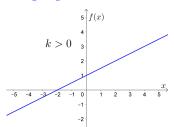
Die Definition dieser Grenzwerte ist ähnlich zu der Definition des Grenzwerts von Folgen.

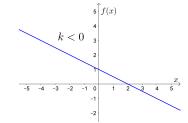
Mehr dazu findest du auf dem Arbeitsblatt - Grenzwert von Funktionen II.

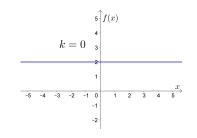
Lineare Funktionen

Lineare Funktionen: $f(x) = k \cdot x + d$ mit $k, d \in \mathbb{R}$

Die Steigung k bestimmt das asymptotische Verhalten von f.







 $\lim_{x \to \infty} f(x) = \infty$

 $\lim_{x \to -\infty} f(x) = -\infty$

 $\lim_{x \to \infty} f(x) = \infty$

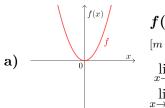
 $\lim_{x \to \infty} f(x) = \mathbf{d}$

Potenzfunktionen

Potenzfunktionen: $f(x) = a \cdot x^m$ mit $a \in \mathbb{R}, m \in \mathbb{Z}^*$

Das Verhalten an der Stelle x = 0 und das asymptotische Verhalten hängen von a und m ab. [Ist m positiv oder negativ? Ist m gerade oder ungerade? Ist a positiv oder negativ?]

Ermittle jeweils das asymptotische Verhalten und skizziere den Funktionsgraphen.



$$f(x) = x^2$$

$$[m > 0, m \text{ gerade}, a > 0]$$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

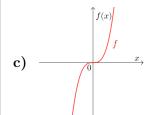
b)

$$f(x) = -x^2$$

[m > 0, m gerade, a < 0]

$$\lim_{x \to \infty} f(x) = -\infty$$
$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

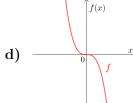


$$f(x) = x^3$$

[m > 0, m ungerade, a > 0]

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

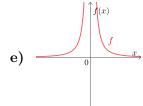


$$f(x) = -x^3$$

[m > 0, m ungerade, a < 0]

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

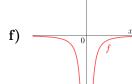


$$f(x) = x^{-2} = \frac{1}{x^2}$$

[m < 0, m gerade, a > 0]

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = 0$$



$$f(x) = -x^{-2} = -\frac{1}{x^2}$$

[m < 0, m gerade, a < 0]

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = 0$$

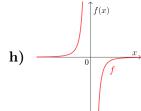


$$f(x) = x^{-3} = \frac{1}{x^3}$$

 $[m<0,\,m \text{ ungerade},\,a>0]$

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = 0$$



$$f(x) = -x^{-3} = -\frac{1}{x^3}$$

[m < 0, m ungerade, a < 0]

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = 0$$

Herausheben (

Um das asymptotische Verhalten von Polynomfunktionen zu begründen, heben wir heraus:

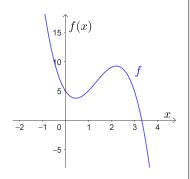
$$f(x) = -2 \cdot x^3 + 8 \cdot x^2 - 6 \cdot x + 5 =$$

$$= -2 \cdot x^3 \cdot \left(1 - \underbrace{\frac{4}{x}}_{\to 0} + \underbrace{\frac{3}{x^2}}_{\to 0} - \underbrace{\frac{5}{2 \cdot x^3}}_{\to 0} \right)$$

Für diese Polynomfunktion f gilt also:

Wenn $x \to \infty$, dann $f(x) \to -\infty$.

Wenn $x \to -\infty$, dann $f(x) \to \infty$.



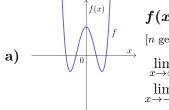
c)

Polynomfunktionen (

Polynomfunktionen: $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \cdots + a_1 \cdot x + a_0$ mit $a_n \neq 0$

Der Term $a_n \cdot x^n$ bestimmt das asymptotische Verhalten.

[Ist n gerade oder ungerade? Ist a_n positiv oder negativ?]



$$f(x) = 2 \cdot x^4 - 5 \cdot x^2 + 2$$

 $[n \text{ gerade}, a_n > 0]$

$$\lim_{x \to \infty} f(x) = \infty$$

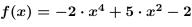
$$\lim_{x \to -\infty} f(x) = \infty$$

$$f(x) = x^3 + 3 \cdot x^2 - 3$$

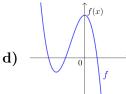
 $[n \text{ ungerade}, a_n > 0]$

$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$



[n gerade, $a_n < 0$] $\lim_{x \to \infty} f(x) = -\infty$ $\lim_{x \to \infty} f(x) = -\infty$



$$f(x) = -x^3 - 3 \cdot x^2 + 3$$

[n ungerade, $a_n < 0$]

$$\lim_{x \to \infty} f(x) = -\infty$$

$$\lim_{x \to \infty} f(x) = \infty$$

Exponentialfunktionen (

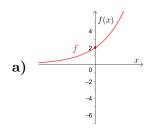
Exponential funktionen: $f(x) = a \cdot b^x$ bzw. $f(x) = a \cdot e^{\lambda \cdot x}$ mit $a \neq 0, b > 0, b \neq 1$ bzw. $\lambda \neq 0$

- b > 1 bzw. $\lambda > 0$: Wenn $x \to \infty$, dann $b^x \to \infty$ bzw. $e^{\lambda \cdot x} \to \infty$.
- 0 < b < 1 bzw. $\lambda < 0$: Wenn $x \to \infty$, dann $b^x \to 0$ bzw. $e^{\lambda \cdot x} \to 0$.

Wegen $\lim_{x\to -\infty} b^x = \lim_{x\to \infty} b^{-x}$ und $b^{-x} = \frac{1}{b^x} = \left(\frac{1}{b}\right)^x$ sind für $x\to -\infty$ die beiden Fälle genau vertauscht:

- b > 1 bzw. $\lambda > 0$: Wenn $x \to -\infty$, dann $b^x \to 0$ bzw. $e^{\lambda \cdot x} \to 0$.
- 0 < b < 1 bzw. $\lambda < 0$: Wenn $x \to -\infty$, dann $b^x \to \infty$ bzw. $e^{\lambda \cdot x} \to \infty$.

Ermittle jeweils das asymptotische Verhalten und skizziere den Funktionsgraphen.

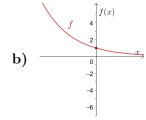


$$f(x) = 2 \cdot 1{,}3^x$$

$$f(x) = 2 \cdot e^{0,262 \dots \cdot x}$$

$$[a>0,\ b>1$$
 bzw. $\lambda>0]$

$$\lim_{x \to \infty} f(x) = \infty$$
$$\lim_{x \to -\infty} f(x) = 0$$



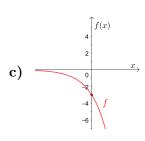
$$f(x) = 0.8^x$$

$$f(x) = e^{-0.223...\cdot x}$$

$$[a > 0, 0 < b < 1 \text{ bzw. } \lambda < 0]$$

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = \infty$$



$$f(x) = -3 \cdot 1,5^x$$

$$f(x) = -3 \cdot e^{0,405\dots \cdot x}$$

 $\lim_{x \to \infty} f(x) = -\infty$

$$\lim_{x \to -\infty} f(x) = 0$$

$$f(x) = -2 \cdot 0.7^x$$

$$f(x) = -2 \cdot e^{0,356\dots \cdot x}$$

 $[a < 0, 0 < b < 1 \text{ bzw. } \lambda < 0]$

$$\lim_{x \to \infty} f(x) = 0$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

Summe von Funktionen

Aus den Funktionen f und g bilden wir die Funktion s mit: s(x) = f(x) + g(x)

Wenn $f(x) \to a$ und $g(x) \to b$, dann gilt:

$$s(x) = f(x) + g(x) \to a + b$$

Wenn $f(x) \to a$ und $g(x) \to \infty$, dann gilt:

$$s(x) = f(x) + g(x) \to \infty$$

+	b	∞	$-\infty$
a	a + b	∞	$-\infty$
∞	∞	∞	unbestimmt
$-\infty$	$-\infty$	unbestimmt	$-\infty$

Vervollständige rechts die Tabelle $(a, b \in \mathbb{R})$.

Bei $\infty - \infty$ sprechen wir von einem unbestimmten Ausdruck, weil das Ergebnis von f und g abhängt:

$$\text{Wenn } f(x) = 4 \cdot x \to \infty \text{ und } g(x) = -2 \cdot x \to -\infty, \text{ dann } s(x) = 4 \cdot x + (-2 \cdot x) = 2 \cdot x \to \infty.$$

Wenn
$$f(x) = 2 \cdot x \to \infty$$
 und $g(x) = -4 \cdot x \to -\infty$, dann $s(x) = 2 \cdot x + (-4 \cdot x) = -2 \cdot x \to -\infty$.

Differenz von Funktionen

Aus den Funktionen f und g bilden wir die Funktion d mit:

$$d(x) = f(x) - g(x)$$

Vervollständige rechts die Tabelle $(a, b \in \mathbb{R})$.

_	b	∞	$-\infty$
a	a-b	$-\infty$	∞
∞	∞	unbestimmt	∞
$-\infty$	$-\infty$	$-\infty$	unbestimmt

Produkt von Funktionen

Aus den Funktionen f und g bilden wir die Funktion p mit:

$$p(x) = f(x) \cdot q(x)$$

Vervollständige rechts die Tabelle (a, b > 0).

•	b	-b	0	∞	$-\infty$
a	$a \cdot b$	$-a \cdot b$	0	∞	$-\infty$
-a	$-a \cdot b$	$a \cdot b$	0	$-\infty$	∞
0	0	0	0	unbest.	unbest.
∞	∞	$-\infty$	unbest.	∞	$-\infty$
$-\infty$	$-\infty$	∞	unbest.	$-\infty$	∞

Quotient von Funktionen

Aus den Funktionen f und g bilden wir die Funktion q mit:

$$q(x) = \frac{f(x)}{g(x)}$$
 mit $g(x) \neq 0$

Vervollständige rechts die Tabelle (a, b > 0).

/	b	-b	0	∞	$-\infty$
a	a/b	-a/b	unbest.	0	0
-a	-a/b	a/b	unbest.	0	0
0	0	0	unbest.	0	0
∞	∞	$-\infty$	unbest.	unbest.	unbest.
$-\infty$	$-\infty$	∞	unbest.	unbest.	unbest.

$Verkettung\ von\ Funktionen$

a) Wenn
$$t \to \infty$$
, dann $0.87^t \to 0$ und damit: $\lim_{t \to \infty} \frac{20}{4 + 2 \cdot 0.87^t} = \frac{20}{4 + 2 \cdot 0} = 5$

b) Wenn
$$x \to \infty$$
, dann $x^2 - x \to \infty$ und damit: $\lim_{x \to \infty} \frac{1}{x^2 - x} = 0$

c) Wenn
$$x \to \infty$$
, dann $-x^2 \to -\infty$ und damit: $\lim_{x \to \infty} e^{-x^2} = 0$

