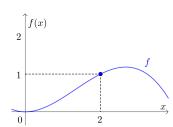
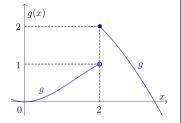
Grundvorstellung zur Stetigkeit

Stetigkeit: "Kleine Veränderungen in x-Richtung bewirken kleine Veränderungen in y-Richtung."



Wie ändern sich links die Funktionswerte von f, wenn wir uns $ein\ bisschen$ von der Stelle x=2 nach links oder nach rechts bewegen?

Wie ändern sich rechts die Funktionswerte von g, wenn wir uns $ein\ bisschen$ von der Stelle x=2 nach links oder nach rechts bewegen?



Die Funktion f ist **stetig** an der Stelle x = 2.

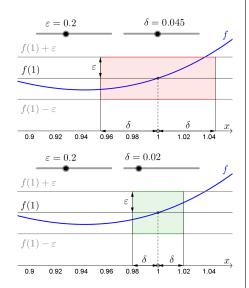
Die Funktion g ist **unstetig** an der Stelle x = 2.

Stetigkeit

Stetigkeit ist in der Mathematik exakt definiert:

Die rechts dargestellte Funktion f ist stetig an der Stelle $x_0=1$. Das heißt, wir können stets das folgende Spiel gewinnen:

- 1) Unser Gegner legt eine Fehlertoleranz $\varepsilon > 0$ fest. In den Bildern rechts ist zum Beispiel $\varepsilon = 0,2$.
- 2) Danach wählen wir einen Spielraum $\delta>0$. Im Bild oben ist $\delta=0.045$. Im Bild unten ist $\delta=0.02$.
- 3) Die Fehlertoleranz ε und der Spielraum δ legen wie rechts dargestellt ein Rechteck mit Mittelpunkt $(1 \mid f(1))$, Breite $2 \cdot \delta$ und Höhe $2 \cdot \varepsilon$ fest.
- 4) Liegt an jeder Stelle x in $]1 \delta; 1 + \delta[$ der zugehörige Funktionswert f(x) in $]f(1) \varepsilon; f(1) + \varepsilon[$, dann gewinnt unser Spielraum δ gegen die vorgegebene Fehlertoleranz ε . In diesem Spiel gewinnt also $\delta = 0.02$ gegen $\varepsilon = 0.2$.



Wenn es an der Stelle x_0 zu jeder noch so kleinen positiven Fehlertoleranz ε einen passenden positiven Spielraum δ gibt, dann ist die Funktion an der Stelle x_0 stetig.

Genau dann, wenn die Funktion f stetig an der Stelle x_0 ist, schreiben wir:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Wenn die Funktion f an jeder Stelle x_0 stetig ist, dann ist f eine stetige Funktion.

Der Ausdruck $\lim_{x \to x_0} f(x)$ ist der sogenannte Grenzwert der Funktion f an der Stelle x_0 . Beim Versuch, diesen Grenzwert zu ermitteln,

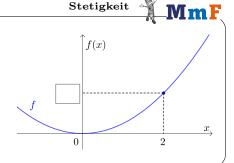
können neben Stetigkeit – also $\lim_{x \to x_0} f(x) = f(x_0)$ – auch noch einige andere Fälle eintreten.

Mehr dazu findest du auf dem Arbeitsblatt - Grenzwert von Funktionen II.

Die rechts dargestellte Funktion f mit $f(x) = \frac{x^2}{4}$ ist stetig an der Stelle $x_0 = 2$. Ermittle ihren Grenzwert an dieser Stelle:

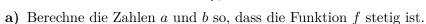
$$\lim_{x \to 2} f(x) =$$

Trage rechts die richtige Zahl in das Kästchen ein.

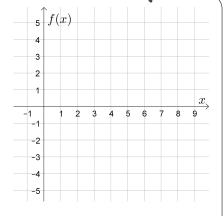


Stückweise definierte Funktion

Für die Funktion f gilt: $f(x) = \begin{cases} -2 \cdot x + a, & \text{falls } x < 2, \\ -3, & \text{falls } 2 \le x \le 6, \\ \frac{1}{3} \cdot x + b, & \text{falls } x > 6. \end{cases}$



b) Zeichne rechts den Funktionsgraphen ein.



Stetige Funktionen

Die **elementaren Funktionen** sind – überall dort, wo sie definiert sind – **stetig**. Dazu zählen:

1) Polynomfunktionen: $f(x) = 4 \cdot x^5 - 5 \cdot x^3 + 2 \cdot x + 42$ mit Definitionsmenge $D = \mathbb{R}$

2) Potenzfunktionen: $p(x) = x^{-2} = \frac{1}{x^2}$ mit Definitionsmenge $D = \mathbb{R} \setminus \{0\}$

3) Wurzelfunktionen: $w(x) = x^{\frac{5}{4}} = \sqrt[4]{x^5}$ mit Definitionsmenge $D = \mathbb{R}^+$

4) Exponential funktionen: $e(x) = 4^x$ mit Definitionsmenge $D = \mathbb{R}$

5) Logarithmusfunktionen: $\ell(x) = \log_4(x)$ mit Definitionsmenge $D = \mathbb{R}^+$

6) Winkelfunktionen: $s(x) = \sin(x)$ mit Definitionsmenge $D = \mathbb{R}$

7) Arkusfunktionen: $a(x) = \arcsin(x)$ mit Definitionsmenge D = [-1; 1]

Wenn f und g stetige Funktionen sind, dann sind auch ihre **Summe**, ihre **Differenz**, ihr **Produkt**, ihr **Quotient** und ihre **Verkettung** wieder im gesamten Definitionsbereich **stetig**.

${\bf Baukasten prinzip}$

Die Funktionen f mit $f(x) = \sqrt{x}$ und g mit g(x) = x - 1 sind als elementare Funktionen stetig.

- a) Die Funktion s mit $s(x) = \sqrt{x} + x 1$ ist als Summe stetiger Funktionen auch stetig. Die Funktion s ist für alle $x \ge 1$ definiert.
- b) Die Funktion d mit $d(x) = \sqrt{x} x + 1$ ist als Differenz stetiger Funktionen auch stetig. Die Funktion d ist für alle $x \ge 1$ definiert.
- c) Die Funktion p mit $p(x) = \sqrt{x} \cdot (x-1)$ ist als Produkt stetiger Funktionen auch stetig. Die Funktion p ist für alle $x \ge 1$ definiert.
- d) Die Funktion q mit $q(x) = \frac{\sqrt{x}}{x-1}$ ist als Quotient stetiger Funktionen auch stetig. Die Funktion q ist für alle $x \ge 1$ außer x = 1 definiert.
- e) Die Funktion k mit $k(x) = \sqrt{x-1}$ ist als Verkettung stetiger Funktionen auch stetig. Die Funktion k ist für alle $x \ge 1$ definiert.

Polstelle (

Die Funktion f mit $f(x) = \frac{3}{x-4}$ ist für alle $x \in \mathbb{R}$ definiert außer für x = 1.

Streiche jeweils die falsche Antwort durch:

i) Wenn x "ein bisschen" größer als 4 ist, dann ist f(x) eine positive / negative und betragsmäßig "sehr große" / "sehr kleine" Zahl.

 $\frac{3}{0.00001}$

ii) Wenn x "ein bisschen" kleiner als 4 ist, dann ist f(x) eine positive / negative und betragsmäßig "sehr große" / "sehr kleine" Zahl.

 $\frac{3}{-0,00001}$

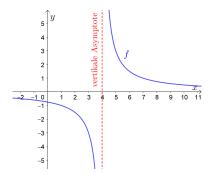
Der Graph der Funktion f ist rechts dargestellt.

Die Stelle x = 4 nennt man eine **Polstelle** von f.

Die strichlierte senkrechte Gerade durch die Polstelle nennt man eine **vertikale Asymptote** von f.

Der rechtsseitige Grenzwert an der Stelle x=4 ist $\lim_{x\to 4+} f(x)=\infty$. Der linksseitige Grenzwert an der Stelle x=4 ist $\lim_{x\to 4-} f(x)=-\infty$.

Mehr dazu findest du auf dem Arbeitsblatt - Grenzwert von Funktionen II.



Asymptotisches Verhalten

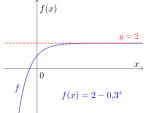
Beim asymptotischen Verhalten einer Funktion f untersuchen wir ihre Funktionswerte f(x), wenn x gegen unendlich geht $(x \to \infty)$ bzw. x gegen minus unendlich geht $(x \to -\infty)$.

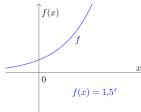
Dabei tritt jeweils genau einer der 4 folgenden Fälle ein:

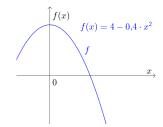
- $\mathrm{i)}\ \lim_{x\to\infty}f(x)=c\qquad \qquad \mathrm{ii)}\ \lim_{x\to\infty}f(x)=\infty\qquad \mathrm{iii)}\ \lim_{x\to\infty}f(x)=-\infty\qquad \mathrm{iv)}\ \lim_{x\to\infty}f(x)$

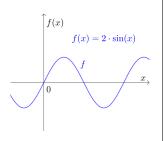
Kurz: $f(x) \to c$ Kurz: $f(x) \to \infty$ Kurz: $f(x) \to -\infty$

existiert *nicht*.









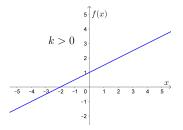
Die Definition dieser Grenzwerte ist ähnlich zu der Definition des Grenzwerts von Folgen.

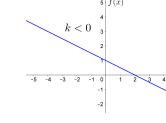
Mehr dazu findest du auf dem Arbeitsblatt - Grenzwert von Funktionen II.

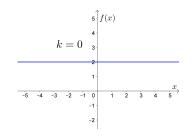
Lineare Funktionen

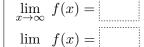
Lineare Funktionen: $f(x) = k \cdot x + d$ mit $k, d \in \mathbb{R}$

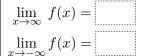
Die Steigung k bestimmt das asymptotische Verhalten von f.









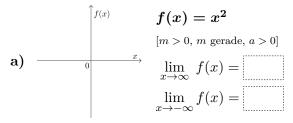


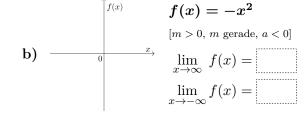
Potenzfunktionen

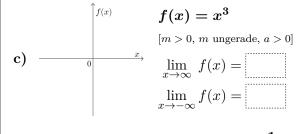
Potenzfunktionen: $f(x) = a \cdot x^m$ mit $a \in \mathbb{R}, m \in \mathbb{Z}^*$

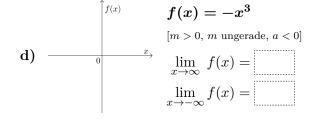
Das Verhalten an der Stelle x=0 und das asymptotische Verhalten hängen von a und m ab. [Ist m positiv oder negativ? Ist m gerade oder ungerade? Ist a positiv oder negativ?]

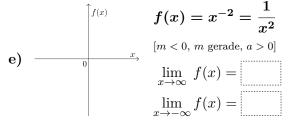
Ermittle jeweils das asymptotische Verhalten und skizziere den Funktionsgraphen.

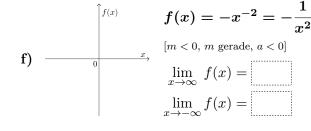


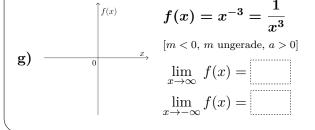


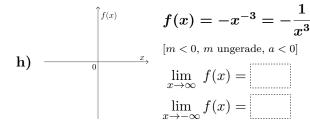










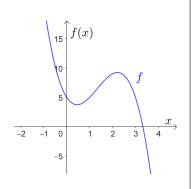


Herausheben (

Um das asymptotische Verhalten von Polynomfunktionen zu begründen, heben wir heraus:

$$f(x) = -2 \cdot x^3 + 8 \cdot x^2 - 6 \cdot x + 5 =$$

$$= -2 \cdot x^3 \cdot \left(\underbrace{ } \right) - \underbrace{ \underbrace{ } \right) + \underbrace{ \underbrace{ } \right) - \underbrace{ } \right)$$



Für diese Polynomfunktion f gilt also:

Wenn $x \to \infty$, dann $f(x) \to$.

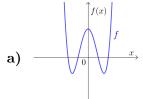
Wenn $x \to -\infty$, dann $f(x) \to -\infty$.

Polynomfunktionen (

Polynomfunktionen: $f(x) = a_n \cdot x^n + a_{n-1} \cdot x^{n-1} + \cdots + a_1 \cdot x + a_0$ mit $a_n \neq 0$

Der Term $a_n \cdot x^n$ bestimmt das asymptotische Verhalten.

[Ist n gerade oder ungerade? Ist a_n positiv oder negativ?]



$$f(x) = 2 \cdot x^4 - 5 \cdot x^2 + 2$$

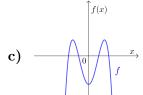
$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty}$$

$$\mathbf{b)} \quad \stackrel{f(x)}{\longrightarrow} \quad f$$

$$f(x) = x^3 + 3 \cdot x^2 - 3$$

 $[n \text{ ungerade}, a_n > 0]$

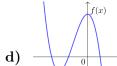
$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty}$$



$$f(x) = -2 \cdot x^4 + 5 \cdot x^2 - 2$$

 $[n \text{ gerade}, a_n < 0]$

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} f(x) = \lim_{x$$



$$f(x) = -x^3 - 3 \cdot x^2 + 3$$

[n ungerade, $a_n < 0$]

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty}$$

Exponential funktionen

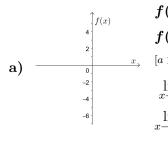
Exponential funktionen: $f(x) = a \cdot b^x$ bzw. $f(x) = a \cdot e^{\lambda \cdot x}$ mit $a \neq 0, b > 0, b \neq 1$ bzw. $\lambda \neq 0$

- b>1 bzw. $\lambda>0$: Wenn $x\to\infty$, dann $b^x\to$ bzw. $e^{\lambda\cdot x}\to$
- bzw. $e^{\lambda \cdot x} \rightarrow$ • 0 < b < 1 bzw. $\lambda < 0$: Wenn $x \to \infty$, dann $b^x \to \infty$

Wegen $\lim_{x\to-\infty}b^x=\lim_{x\to\infty}b^{-x}$ und $b^{-x}=\frac{1}{b^x}=\left(\frac{1}{b}\right)^x$ sind für $x\to-\infty$ die beiden Fälle genau vertauscht:

- b > 1 bzw. $\lambda > 0$: Wenn $x \to -\infty$, dann $b^x \to$ bzw. $e^{\lambda \cdot x} \to$
- bzw. $e^{\lambda \cdot x} \rightarrow$ • 0 < b < 1 bzw. $\lambda < 0$: Wenn $x \to -\infty$, dann $b^x \to -\infty$

Ermittle jeweils das asymptotische Verhalten und skizziere den Funktionsgraphen.

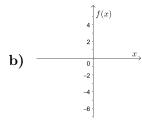


$$f(x) = 2 \cdot 1,3^{x}$$

$$f(x) = 2 \cdot e^{0,262\dots \cdot x}$$

$$\begin{array}{ccc}
\mathbf{J}(\omega) &= \mathbf{2} & \mathbf{C} \\
\underline{x} & [a > 0, b > 1 \text{ bzw. } \lambda > 0]
\end{array}$$

$$\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \lim_{x \to -\infty}$$

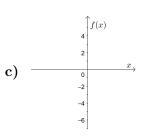


$$f(x) = 0.8^x$$

$$f(x) = e^{-0.223...\cdot x}$$

 \underline{x} $[a > 0, 0 < b < 1 \text{ bzw. } \lambda < 0]$ $\lim_{x \to \infty} f(x) = 0$

$$\lim_{x \to -\infty} f(x) = \frac{1}{1 + \frac{1}{2}}$$



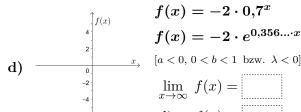
$$f(x) = -3 \cdot 1,5^x$$

$$f(x) = -3 \cdot e^{0,405 \dots \cdot x}$$

$$x \to [a < 0, b > 1 \text{ bzw. } \lambda > 0]$$

$$\lim_{x \to \infty} f(x) = [a < 0, b > 1 \text{ bzw. } \lambda > 0]$$

$$\lim_{x \to \infty} f(x) = \frac{1}{1 + \frac{1}{2}}$$



$$f(x) = -2 \cdot 0.7^x$$

$$f(x) = -2 \cdot e^{0,356...\cdot x}$$

 $\lim_{x \to \infty} f(x) =$

$$\lim_{x \to -\infty} f(x) =$$

Summe von Funktionen

Aus den Funktionen f und g bilden wir die Funktion s mit: s(x) = f(x) + g(x)

Wenn $f(x) \to a$ und $g(x) \to b$, dann gilt:

$$s(x) = f(x) + g(x) \rightarrow a + b$$

Wenn $f(x) \to a$ und $g(x) \to \infty$, dann gilt:

$$s(x) = f(x) + g(x) \to \infty$$

+	b	∞	$-\infty$
a	a+b	∞	
∞			unbestimmt
$-\infty$		unbestimmt	

Vervollständige rechts die Tabelle $(a, b \in \mathbb{R})$.

Bei $\infty - \infty$ sprechen wir von einem unbestimmten Ausdruck, weil das Ergebnis von f und g abhängt:

Wenn
$$f(x) = 4 \cdot x \to \infty$$
 und $g(x) = -2 \cdot x \to -\infty$, dann $s(x) = 4 \cdot x + (-2 \cdot x) = 2 \cdot x \to \infty$.

Wenn
$$f(x) = 2 \cdot x \to \infty$$
 und $g(x) = -4 \cdot x \to -\infty$, dann $s(x) = 2 \cdot x + (-4 \cdot x) = -2 \cdot x \to -\infty$.

Differenz von Funktionen

Aus den Funktionen f und g bilden wir die Funktion d mit:

$$d(x) = f(x) - g(x)$$

Vervollständige rechts die Tabelle $(a, b \in \mathbb{R})$.

_	b	∞	$-\infty$
a	a-b		
∞		unbestimmt	
$-\infty$			unbestimmt

Produkt von Funktionen

Aus den Funktionen f und g bilden wir die Funktion p mit:

$$p(x) = f(x) \cdot q(x)$$

Vervollständige rechts die Tabelle (a, b > 0).

•	b	-b	0	∞	$-\infty$
a	$a \cdot b$				
-a					
0				unbest.	unbest.
∞			unbest.		
$-\infty$			unbest.		

Quotient von Funktionen

Aus den Funktionen f und g bilden wir die Funktion q mit:

$$q(x) = \frac{f(x)}{g(x)}$$
 mit $g(x) \neq 0$

Vervollständige rechts die Tabelle (a, b > 0).

/	b	-b	0	∞	$-\infty$
a	a/b		unbest.		
-a			unbest.		
0			unbest.		
∞			unbest.	unbest.	unbest.
$-\infty$			unbest.	unbest.	unbest.

Verkettung von Funktionen

a) Wenn
$$t \to \infty$$
, dann $0.87^t \to \boxed{}$ und damit: $\lim_{t \to \infty} \frac{20}{4 + 2 \cdot 0.87^t} = \frac{20}{4 + 2 \cdot 10^{-100}} = \boxed{}$

b) Wenn
$$x \to \infty$$
, dann $x^2 - x \to$ und damit: $\lim_{x \to \infty} \frac{1}{x^2 - x} =$

c) Wenn
$$x \to \infty$$
, dann $-x^2 \to$ und damit: $\lim_{x \to \infty} e^{-x^2} =$

