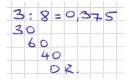
Rationale Zahlen

Jede rationale Zahl kann man als Bruch $\frac{a}{b}$ mit ganzen Zahlen a und $b \neq 0$ schreiben.

Um einen Bruch in eine Dezimalzahl umzuwandeln, führen wir die Division durch.

Bei der Berechnung der Nachkommastellen tritt einer der beiden folgenden Fälle ein:

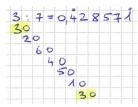
Fall 1: Nach einem Rechenschritt bleibt 0 Rest.



In diesem Fall hat die Dezimalzahl nur endlich viele Nachkommastellen $\neq 0$.

$$\frac{3}{8} = 0.375$$

Fall 2: Es bleibt niemals 0 Rest.



Dann gibt es bei der Division durch 7 nur mehr 6 mögliche Reste, nämlich 1, 2, 3, 4, 5, 6.

Spätestens bei der 7. Nachkommastelle muss sich also ein Rest wiederholen. In diesem Fall ist die Dezimalzahl periodisch.

$$\frac{3}{7} = 0.\dot{4}2857\dot{1} = 0.428571|428571|428571|...$$

Es gilt auch die Umkehrung:

1) Jede Dezimalzahl mit endlich vielen Nachkommastellen $\neq 0$ ist eine rationale Zahl.

Schreibe die Dezimalzahl als Bruch: $42,23 = \frac{1}{1000}$

2) Jede periodische Dezimalzahl ist eine rationale Zahl. Zum Beispiel gilt für 0,42:

$$\underbrace{100 \cdot 0, \dot{4}\dot{2}}_{=42,4242...} = \underbrace{42 + 0, \dot{4}\dot{2}}_{=42,4242...} \implies 99 \cdot 0, \dot{4}\dot{2} = 42 \implies 0, \dot{4}\dot{2} = \frac{42}{99}$$

Irrationale Zahlen

Die Dezimalzahl $0, |12|112|1112|11112|111112| \cdots$

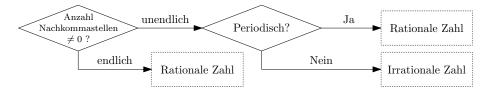
liegt zwischen 0,12 und 0,13 auf der Zahlengerade.

 $0, |12|112|1112|11112|111112| \cdots$ 0.12 0.121 0.122 0.123 0.124 0.125 0.126 0.127 0.128 0.129 0.13

Sie hat unendlich viele Nachkommastellen $\neq 0$ und ist *nicht* periodisch.

Man kann sie also *nicht* als Bruch $\frac{a}{b}$ mit ganzen Zahlen a und $b \neq 0$ schreiben.

Zahlen mit dieser Eigenschaft heißen irrationale Zahlen:



Man kann zeigen, dass zum Beispiel die folgenden Zahlen irrational sind:

• Kreiszahl: $\pi = 3,141592653589793238462643383279502884197169\cdots$ Erster Beweis im 18. Jhdt.

• Eulersche Zahl: $e = 2,718281828459045235360287471352662497757247 \cdots$ Erster Beweis im 18. Jhdt.

• $\sqrt{2} = 1,414213562373095048801688724209698078569671 \cdots$ Erster Beweis vor mehr als 2000 Jahren.

• $\sqrt{3} = 1,732050807568877293527446341505872366942805 \cdots$ Erster Beweis vor mehr als 2000 Jahren.

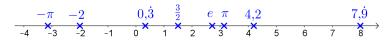
• $0, |1|2|3|4|5|6|7|8|9|10|11|12|13|14|15|16|17|18|19|20|21| \cdots$ Findest du eine Begründung?

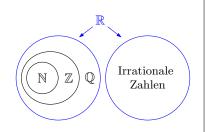
Tatsächlich gibt es unendlich viele irrationale Zahlen.

Reelle Zahlen

Die Menge der rationalen Zahlen Q und die Menge der irrationalen Zahlen bilden zusammen die Menge der reellen Zahlen \mathbb{R} .

Wenn man alle reellen Zahlen auf der Zahlengerade einträgt, dann ist sie lückenlos gefüllt.





Kreuze jeweils alle Zahlenbereiche an, in denen die Zahl enthalten ist.

	4,2	$\sqrt{5}$	-3	87	$-\frac{1}{3}$	$\sqrt{36}$	$2 \cdot \pi$	$\frac{1}{\sqrt{4}}$	7,58
N									
\mathbb{Z}									
Q									
\mathbb{R}									

Intervall

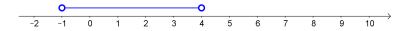
Ein Intervall ist eine zusammenhängende Teilmenge der reellen Zahlen.

1) Abgeschlossenes Intervall: [2,7]

Alle reellen Zahlen, die sowohl ≥ 2 als auch ≤ 7 sind.

2) Offenes Intervall:]-1;4[bzw. (-1;4)

Alle reellen Zahlen, die sowohl > -1 als auch < 4 sind.



3) Linksoffenes Intervall: [0,5] bzw. (0,5]

Alle reellen Zahlen, die sowohl > 0 als auch ≤ 5 sind.

4) Rechtsoffenes Intervall: $\left[-2; \frac{7}{2}\right]$ bzw. $\left[-2; \frac{7}{2}\right]$ Alle reellen Zahlen, die sowohl ≥ -2 als auch $<\frac{7}{2}$ sind.

5) Unbeschränkte Intervalle: $]1; \infty[$ bzw. $(1; \infty)$

 $]-\infty;4]$ bzw. $(-\infty;4]$

Alle reellen Zahlen, die > 1 sind.

Alle reellen Zahlen, die ≤ 4 sind.

Welche der folgenden Zahlen sind im Intervall [-4; 5[enthalten? Kreuze an.

-4,2	4,2	-4	5	$\frac{9}{2}$	$\sqrt{15}$	$-1,\dot{2}\dot{3}$	$2 \cdot \pi$

