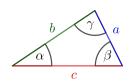
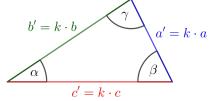
Ähnlichkeit

Zwei Dreiecke sind zueinander ähnlich, wenn ihre Winkel paarweise übereinstimmen. In den beiden Dreiecken haben entsprechende Seitenlängen dasselbe Verhältnis:

$$\frac{a'}{a} = \frac{b'}{b} = \frac{c'}{c} = k$$

Die Zahl k nennen wir auch Skalierungsfaktor.



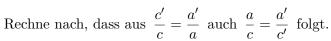


Seitenverhältnisse im rechtwinkeligen Dreieck

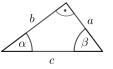
Die beiden dargestellten rechtwinkeligen Dreiecke haben den gleichen spitzen Winkel α . Der dritte Winkel β muss dann auch in beiden Dreiecken gleich groß sein. Warum? Stelle mithilfe von α eine Formel zur Berechnung von β auf.

$$\beta =$$

Die beiden Dreiecke sind also zueinander ähnlich.



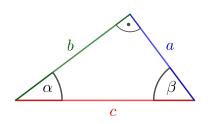
Kennt man von einem rechtwinkeligen Dreieck einen spitzen Winkel α , dann ist also jedes Verhältnis von 2 Seitenlängen eindeutig festgelegt.



Winkelfunktionen im rechtwinkeligen Dreieck

Die Kathete a liegt $gegen \ddot{u}ber$ von α . Sie heißt deshalb **Gegenkathete von \alpha**. Die Kathete b liegt am Winkel α an. Sie heißt deshalb **Ankathete von \alpha**.

Die Winkelfunktionen Sinus, Cosinus und Tangens ordnen jedem spitzen Winkel α ein Seitenverhältnis im rechtwinkeligen Dreieck mit Winkel α zu:



$$\sin(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Hypotenuse}} = \frac{a}{c}$$

"Sinus von α "

$$\cos(\alpha) = \frac{\text{Ankathete von } \alpha}{\text{Hypotenuse}} = \frac{b}{c}$$

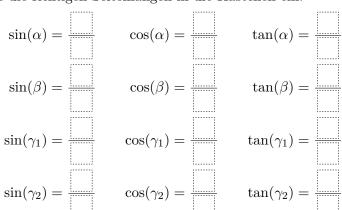
"Cosinus von α "

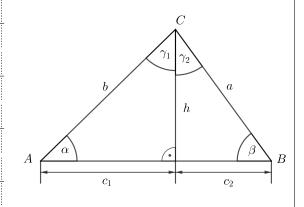
$$\tan(\alpha) = \frac{\text{Gegenkathete von } \alpha}{\text{Ankathete von } \alpha} = \frac{a}{b}$$

"Tangens von α "

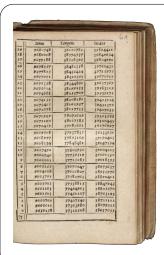
${\bf Zerlegung\ in\ rechtwinkelige\ Dreiecke}$

Das Dreieck ABC wird durch eine Höhe in zwei rechtwinkelige Dreiecke zerlegt. Trage die richtigen Seitenlängen in die Kästchen ein.





Tabellenbuch aus dem Jahr 1619



Links siehst du eine Seite aus einem Tabellenbuch aus dem Jahr 1619. Auf diese Seite sind die Werte von $\sin(\alpha)$ für einige Winkel α mit $75^{\circ} \leq \alpha \leq 75,5^{\circ}$ gedruckt.

Rechts siehst du einen vergrößerten Ausschnitt der Seite. Berechne mit dem Taschenrechner:

$$\sin(75^{\circ}) =$$
 Findest

Findest du diesen Wert rechts?

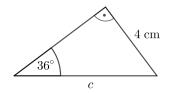
Eine Winkelminute (1') ist $\frac{1}{60}$ von einem Grad (1°).

$$\sin(75^{\circ} 6') = \sin\left(\begin{array}{c} \\ \\ \end{array}\right) = \begin{array}{c} \\ \\ \end{array}$$

Dein Taschenrechner kann diese Werte mithilfe von Taylor-Reihen berechnen.

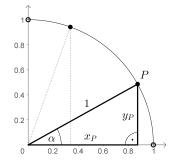
Seitenlänge gesucht

Berechne die Seitenlänge c im rechts dargestellten Dreieck.



Arcusfunktionen

Der Kreisbogen mit Mittelpunkt $(0 \mid 0)$ und Radius 1 ist im Koordinatensystem unten eingezeichnet. Jedem spitzen Winkel α entspricht – wie dargestellt – ein Punkt $P = (x_P \mid y_P)$ auf dem Kreisbogen.



1) Stelle mithilfe von α eine Formel zur Berechnung von y_P auf.

$$y_P =$$

2) Wie groß bzw. wie klein kann $\sin(\alpha)$ für spitze Winkel α also sein?

$$<\sin(\alpha)<$$

Die Zuordnung von Winkel zu Seitenverhältnis kann für spitze Winkel umgekehrt werden. Berechne mit dem Taschenrechner:

$$\sin(\alpha) = 0.5$$

$$\iff \alpha = \arcsin(0,5) =$$

$$\cos(\alpha) = 0.5$$

$$\iff \alpha = \arccos(0,5) =$$

$$\tan(\alpha) = 0.5$$

$$\iff \alpha = \arctan(0,5) =$$

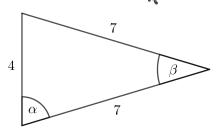
Berechne den Winkel α im rechts dargestellten Dreieck.



Winkel gesucht

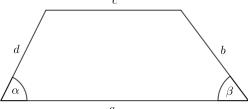
Gleichschenkeliges Dreieck

Berechne die Winkel α und β im rechts dargestellten Dreieck.



Trapez

Im rechts unten dargestellten Trapez gilt: $\alpha=63^\circ,\ \beta=53^\circ,\ b=5\,\mathrm{cm},\ c=6\,\mathrm{cm}$ Berechne den Umfang u vom Trapez.



Trigonometrische Flächenformel

Rechts ist ein Parallelogramm dargestellt. Stelle mithilfe von a, b und α eine Formel für seinen Flächeninhalt F auf.

$$F =$$

Begründung:



 $Daraus \ folgt \ auch \ die \ sogenannte \ trigonometrische \ Fl\"{a}chenformel. \ Mehr \ dazu \ findest \ du \ am \ Arbeitsblatt - Allgemeines \ Dreieck.$

