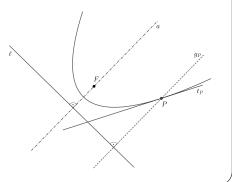
GRUNDLAGENBLATT - PARABELTANGENTEN

Fragen & Antworten auf diesem Grundlagenblatt

- ✓ Wie ist eine **Parabeltangente** definiert?
- ✓ Wie konstruiert man eine Tangente eines gegebenen Parabelpunktes?
- ✓ Wie ist der **Gegenpunkt** einer Parabel definiert?

Tangente einer Parabel

Unter einer **Tangente** einer Parabel versteht man eine Gerade t, die mit der Parabel genau einen Punkt P gemeinsam hat und nicht parallel zur Parabelachse liegt. Man sagt, die Tangente **berührt** die Parabel im Punkt P, den man als den **Berührpunkt** von t mit der Parabel bezeichnet.



Wir müssen Geraden parallel zur Parabelachse in dieser Definition ausdrücklich ausschließen, weil diese auch mit der Parabel immer genau einen Punkt gemeinsam haben, aber nicht die Eigenschaften von Tangenten relativ zur Kurve haben, die man im Rahmen der Differentialrechnung benötigt. (In diesem Kontext genügt es aber, wenn wir derartige Geraden einfach nicht inkludieren.)

Konstruktion 1 (Parabeltangente). Konstruiere die Tangente im Punkt P einer Parabel mit Brennpunkten F und Leitlinie l und Achse a.

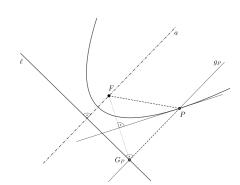
Lösung.

Man geht von einer Geraden parallel zur Achse aus, die immer genau einen Punkt mit der Parabel gemeisam hat. Dies leitet sich unmittelbar aus der punktweisen Konstruktion der Parabel ab.

Datum: 17. November 2022.

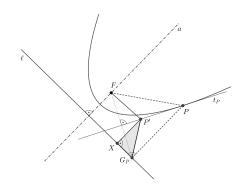
Die Gerade g_P ist hier eine beliebige Normale zur Leitlinie ℓ , und somit eine Parallele zur Achse a. Den Schnittpunkt dieser Geraden mit ℓ bezeichnen wir wieder mit G_P .

Der Normalabstand von jedem Punkt auf g_P zu ℓ ist gleich dem Abstand des Punkts von G_P . Der einzige derartige Punkt, dessen Abstand zu F und ℓ gleich ist, ist somit der Schnittpunkt von g_P mit der Streckensymmetrale von FG_P , und es liegt daher nur ein Parabelpunkt auf dieser Geraden g_P . Die Streckensymmetrale von FG_P hat aber ebenfalls nur diesen einzigen Punkt mit der Parabel gemeinsam, und ist daher die Tangente der Parabel in P.



Es kann keinen zweiten Punkt auf dieser Geraden geben, der die Parabelbedingung erfüllt.

Ist P' ein beliebiger Punkt auf der Streckensymmetrale t_P von FG_P , so gilt jedenfalls $P'F = P'G_P$. Nehmen wir an, es gelte $P' \neq P$ und es sei X der Lotfußpunkt von P' auf ℓ , so ist $P'XG_P$ ein rechtwinkeliges Dreieck, und da die Länge der Hypotenuse in einem rechtwinkeligen Dreieck immer größer als die Länge einer Kathete ist, gilt sicher $P'G_P > P'X = P'\ell$. Somit gilt aber auf jeden Fall $P'F = P'G_P > P'\ell$, womit P' sicher kein Punkt der Parabel ist. Die Gerade t_P ist also die Tangente der Parabel in P.



Gegenpunkt

Analog zur Ellipse definieren wir den Punkt G_P als **Gegenpunkt** von P, da er bezüglich der Tangente in P gegenüber des Brennpunkts F liegt, also mit anderen Worten, symmetrisch zu F bezüglich t_P . Die Leitlinie ℓ ist also die Menge der Gegenpunkte der Parabel.

