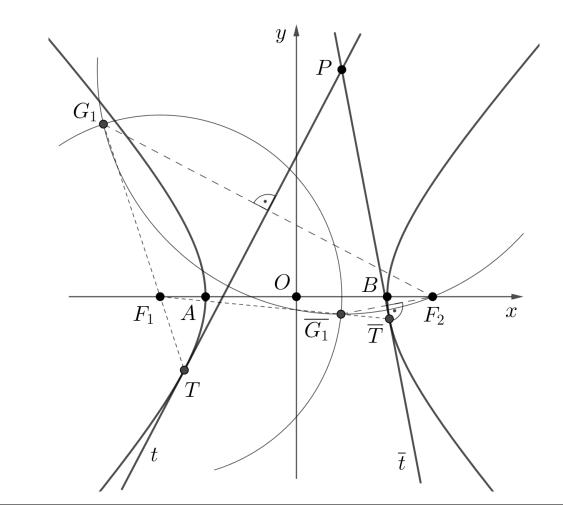
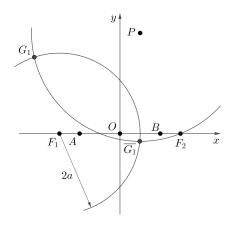
In diesem Abschnitt betrachten wir exemplarisch zwei Konstruktionen, mit deren Hilfe man Tangenten einer gegebenen Hyperbel unter Einsatz eines Gegenkreises bestimmen kann. Die Konstruktionen, die hier für spezielle Maße ausgeführt werden, sind für beliebige Maße gültig. Wie man leicht sehen kann, sind diese Konstruktionen dem Verfahren nach identisch mit den entsprechenden Ellipsentangentenkonstruktionen vom KB – Ellipsentangenten.

Aufgabe 1. Gegeben sei die Hyperbel mit den Brennpunkten $F_1(-3/0)$ und $F_2(3/0)$ und der Hauptachsenlänge a=2. Konstruiere die Tangenten der Hyperbel, die durch den Punkt P(1/5) gehen.

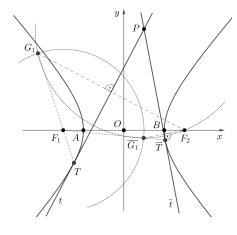


Lösung.

- 1) Wie am GB Hyperbeltangenten besprochen, liegt der symmetrische Punkt zum Brennpunkt F_2 bezüglich jeder beliebigen Hyperbeltangente t (der erste Gegenpunkt G_1) auf dem Kreis mit Mittelpunkt F_1 und dem Radius 2a (dem ersten Gegenkreis der Hyperbel). Da die Tangente dann aufgrund der Spiegelung die Streckensymmetrale von G_1F_2 sein muss, sind die Abstände von jedem Punkt P auf der Tangente zu G_1 und F_2 sicher gleich groß.
 - 2) Der erste Gegenpunkt einer Hyperbeltangente durch P muss also einer der beiden Schnittpunkte des ersten Gegenkreises mit dem Kreis mit Mittelpunkt P durch F_2 sein. In nebenstehender Figur ist der Schnitt dieser beiden Kreise dargestellt. Wir erhalten zwei mögliche erste Gegenpunkte für Hyperbeltangenten durch P, nämlich G_1 und $\overline{G_1}$.



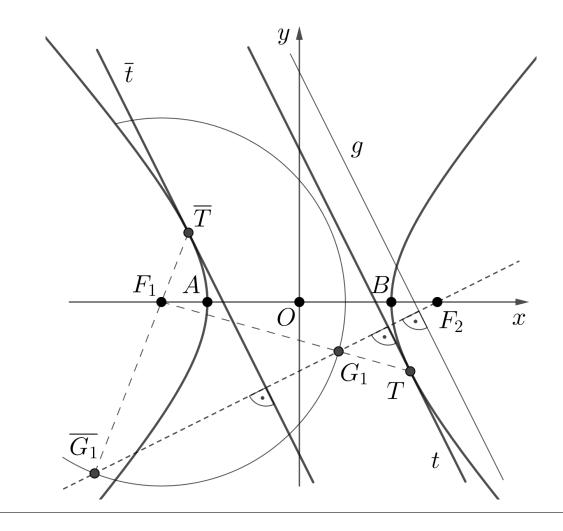
- 3) Die Tangente t, die durch den Gegenpunkt G_1 bestimmt wird ist dann die Streckensymmetrale von G_1F_2 , und somit normal zu dieser Strecke. Der Berührpunkt T von t mit der Hyperbel liegt, wie schon am GB Hyperbeltangenten besprochen, auf der Geraden F_1G_1 , also auf dem Durchmesser des ersten Gegenkreises. Wir erhalten T daher als Schnittpunkt von F_1G_1 mit t.
- 4) Analog gilt dies auch alles für den anderen Gegenpunkt $\overline{G_1}$, und wir erhalten von diesem ausgehend die andere Lösung \overline{t} mit dem Berührpunkt \overline{T} , wie in nebenstehender Figur dargestellt.



Die Konstruktion ist somit abgeschlossen.

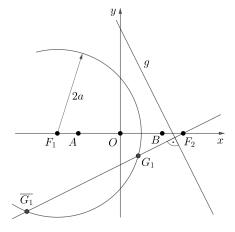
Tangente ist parallel zu gegebener Gerade g

Aufgabe 2. Gegeben sei die Hyperbel mit den Brennpunkten $F_1(-3/0)$ und $F_2(3/0)$ und der Hauptachsenlänge a=2. Konstruiere die Tangenten der Hyperbel, die parallel zur Gerade g=PQ mit P(0/5) und Q(2/1) liegen.

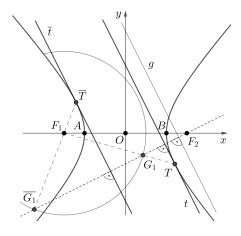


Lösung.

- 1) Wie in Aufgabe 1 wissen wir, dass die ersten Gegenpunkte der gesuchten Tangenten auf dem ersten Gegenkreis der Hyperbel, mit Brennpunkt F_1 und Radius 2a liegen.
- 2) Da jede derartige Tangente t normal zu G_1F_2 liegen muss, und die gegebene Gerade g parallel zu t liegen soll, muss G_1F_2 auch normal zu g liegen. Der erste Gegenpunkt einer Hyperbeltangente parallel zu g muss also einer der beiden Schnittpunkte des ersten Gegenkreises mit der Normalen zu g durch F_2 sein.
 - 3) Hier ist der Schnitt des Gegenkreises mit dieser Normalen dargestellt. Wir erhalten wieder zwei mögliche erste Gegenpunkte für Hyperbelangenten parallel zu g, nämlich G_1 und $\overline{G_1}$.



- 4) Wie in Aufgabe 1 ist nun die Tangente t, die durch den Gegenpunkt G_1 bestimmt wird, die Streckensymmetrale von G_1F_2 , und somit normal zu dieser Strecke. Der Berührpunkt T von t mit der Hyperbel liegt wieder auf dem Durchmesser F_1G_1 des ersten Gegenkreises. Wir erhalten T daher wieder als Schnittpunkt von F_1G_1 mit t.
 - 5) Analog gilt dies auch alles wieder für den anderen Gegenpunkt $\overline{G_1}$, und wir erhalten von diesem ausgehend die andere Lösung \overline{t} mit dem Berührpunkt \overline{T} , wie in nachfolgender Figur dargestellt.



Die Konstruktion ist somit abgeschlossen.

