Lineare Funktionen

Dmytro Rzhemovskyi, Mariia Mykhalova Projekt MmF

February 20, 2024

Aufgabe 1. Gegeben ist eine lineare Funktion und ein Punkt $A(x_1 \mid y_1)$. Zeichne den Graph der Funktion und ermittle, ob der Graph durch den Punkt A verläuft.

a)
$$y = 2x + 1$$
, $A(13 \mid 28)$

b)
$$y = -3x + 2$$
, $A(-13 \mid 41)$

c)
$$y = -\frac{x}{2} + 5$$
, $A(20 \mid 5)$

c)
$$y = -\frac{x}{2} + 5$$
, $A(20 \mid 5)$ d) $y = \frac{x+4}{5}$, $A(-29 \mid -\frac{33}{5})$

Aufgabe 2. (Unbekannter Koeffizient)

Gegeben ist eine lineare Funktion mit einem unbekannten Koeffizient und ein Punkt $A(x_1 \mid y_1)$, der auf dem Graph der linearen Funktion liegt.

Ermittle den unbekannten Koeffizient.

a)
$$y = kx + 3$$
, $A(-2 \mid 5)$

b)
$$y = -2x + b$$
, $A(5 \mid -3)$

a)
$$y = kx + 3$$
, $A(-2 \mid 5)$ b) $y = -2x + b$, $A(5 \mid -3)$ c) $y = \frac{x-2}{a}$, $A(7 \mid 10)$

Proposition 1. (Interpretation der Koeffizienten einer lineren Funktion)

Für die Koeffizienten k und b der linearen Funktion y = kx + b gilt

- a) k ist der Tangens des Winkels zwischen der Geraden y = kx + b und der positiven Richtung von x-Koordinatenachse.
- b) b ist die y-Koordinate des Schnittpunktes der Geraden y = kx + b mit der y-Koordinatenachse.

Bemerkung 1. Aus der Proposition 1 folgt, dass die Gerade y = kx + b genau dann steigend/fallend, wenn der Koeffizient k positiv/negativ ist.

Bemerkung 2. Gegeben sind zwei Punkte $A(x_1 \mid y_1)$ und $B(x_2 \mid y_2)$, die auf der Geraden y = kx + b liegen. Dann kann der Koeffizient k wie folgt berechnet werden.

$$k = \frac{y_2 - y_1}{x_2 - x_1}$$

Aufgabe 3. (Steigung und y-Achsenabschnitt)

Gegeben sind die Graphen der linearen Funktionen y = kx + b (siehe Seite 2). Ermittle ungefähr die Werte der Koeffizienten k und b für jeden Funktionsgraph.

Überlege, wie man mithilfe des Koeffizienten k bestimmen kann, ob die Gerade y = kx + b schnell/langsam steigt/fällt.

1

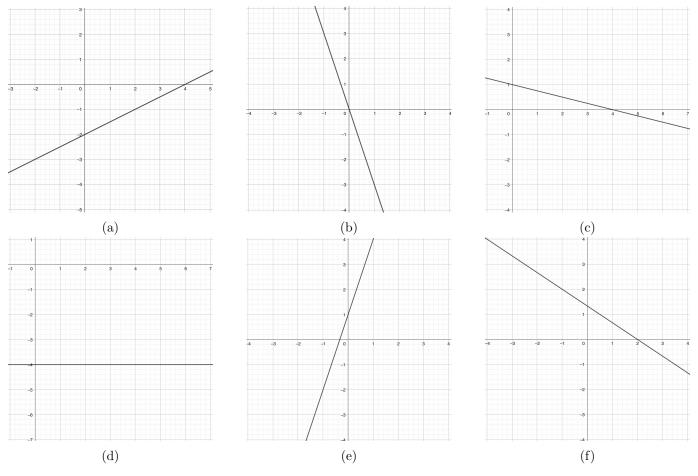


Figure 1: Abbildungen zur Aufgabe 3

Aufgabe 4. (Koeffizienten der linearen Funktionen)

Gegeben sind die Graphen von drei linearen Funktionen (siehe Seite 3).

Ordne die Koeffizienten k_1, k_2 und k_3 sowie die Koeffizienten b_1, b_2 und b_3 .

Aufgabe 5. (Zwei Punkte und Gerade)

Gegeben sind zwei Punkte $A(x_1 \mid y_1)$ und $B(x_2 \mid y_2)$. Finde eine lineare Funktion y = kx + b, deren Graph durch die Punkte A und B verläuft.

a)
$$A(1 | 3)$$
 und $B(-4 | 3)$

b)
$$A(2 \mid 4)$$
 und $B(-3 \mid -6)$

c)
$$A(-4 \mid -10)$$
 und $B(3 \mid 4)$

d)
$$A(5 \mid -3)$$
 und $B(-3 \mid 1)$

Aufgabe 6. (Schnittpunkte mit Koordinatenachsen)

Ermittle die Schnittpunkte des Graphen der linearen Funktion mit den Koordinatenachsen und den Flächeninhalt des Dreiecks, das die dazugehörige Gerade mit den Koordinatenachsen bildet.

a)
$$y = 2x + 3$$

b)
$$y = \frac{1}{2}x + 4$$

c)
$$y = -4x + 2$$

a)
$$y = 2x + 3$$
 b) $y = \frac{1}{2}x + 4$ c) $y = -4x + 2$ d) $y = \frac{3}{4}x + \frac{5}{2}$

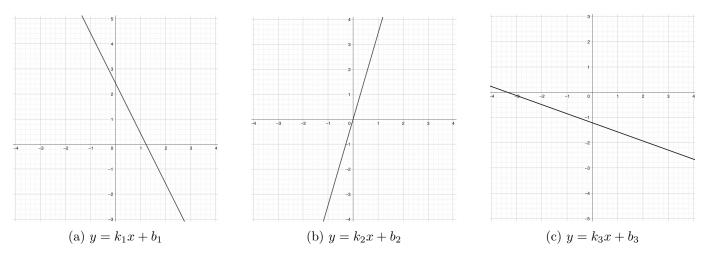


Figure 2: Abbildungen zur Aufgabe 4

Aufgabe 7. (Schnittpunkt zweier Geraden)

Gegeben sind zwei lineare Funktionen. Skizziere die Graphen beider Funktionen und ermittle ihren Schnittpunkt.

a)
$$y = -1$$
 und $y = 2x + 1$

b)
$$y = 3x - 2$$
 und $y = -x + 1$

a)
$$y = -1$$
 und $y = 2x + 1$ b) $y = 3x - 2$ und $y = -x + 1$ c) $y = 4x - 5$ und $y = -0.5x + 4$

Aufgabe 8. (Dreieck)

- a) Gegeben ist die Funktion y = 0.5x + b. Finde den Wert des unbekannten Parameters b, sodass der Flächeninhalt des Dreiecks, das die Gerade und die Koordinatenachsen bilden, gleich 6 ist.
- b) Gegeben sind die Funktion y = 2x 3 und die Funktion y = -0.5x + b. Finde den Wert des unbekannten Parameters b, sodass der Flächeninhalt des Dreiecks, das die Geraden und die x-Achse bilden, gleich 2 ist.

STÜCKWEISE LINEARE FUNKTIONEN

Aufgabe 9. (Funktionsgraph)

Zeichne den Graph der stückweise linearen Funktion.

a)
$$f(x) = \begin{cases} 1, & x < -2 \\ x+3, & x \ge -2 \end{cases}$$
 b) $f(x) = \begin{cases} -x+1, & x < 0 \\ 2x+1, & x \ge 0 \end{cases}$ c) $f(x) = \begin{cases} -3, & x \le 1 \\ x, & x > 1 \end{cases}$ d) $f(x) = \begin{cases} 2, & x \le 1 \\ -2x+4, & 1 < x \le 3 \\ 1, & x > 3 \end{cases}$

Aufgabe 10. (Funktionsterme)

Gegeben ist der Graph (seihe Seite 4) einer stückweise linearen Funktion. Ermittle die Terme der Funktion.

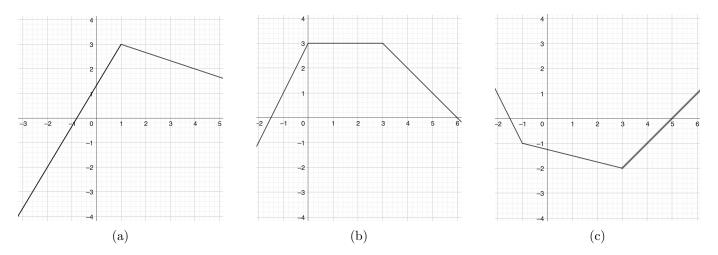


Figure 3: Abbildungen zur Aufgabe 10

Aufgabe 11. (Stetigkeit)

Ermittle die unbekannten Koeffizienten der stückweise linearen Funktion, sodass sie stetig ist.

a)
$$f(x) = \begin{cases} a, & x < -3 \\ -2x + 5, & x \ge -3 \end{cases}$$
 b) $f(x) = \begin{cases} ax - 2, & x < 4 \\ -3x + 7, & x \ge 4 \end{cases}$ c) $f(x) = \begin{cases} x + a, & x \le -2 \\ 3x - 1, & x > -2 \end{cases}$ d) $f(x) = \begin{cases} 2x + 3, & x \le -1 \\ a, & -1 < x \le 4 \\ bx + 7, & x > 4 \end{cases}$