Rotationsvolumen

Dmytro Rzhemovskyi, Mariia Mykhalova Projekt MmF

January 16, 2024

Proposition 1. Gegeben ist eine Funktion f(x) > 0 und das Interval [a, b]. Die Figur, die vom Graphen der Funktion f und der Geraden y=0, x=a, x=b begrenzt wird, rotiert um die x-Achse. Das Volumen des Rotationskörpers kann wie folgt berechnet werden,

$$V = \pi \int_{a}^{b} f^{2}(x)dx$$

Aufgabe 1. Eine Figur, die durch den Graphen der Funktion f(x), die x-Achse und zwei vertikale Linien begrenzt wird, rotiert um die x-Achse. Bestimme den Rotationskörper und berechne sein Volumen einerseits durch die Formel aus der Schulgeometrie und andererseits mithilfe der Integralrechnung.

a)
$$f(x) = 2$$
, $x = 0$, $x = 4$.

b)
$$f(x) = 0.5x, x = 0, x = 2.$$

c)
$$f(x) = 3 - x, x = 0, x = 3.$$

d)
$$f(x) = x + 1, x = 0, x = 4.$$

Aufgabe 2. Eine Figur, die durch den Graphen der Funktion f(x), die x-Achse und zwei vertikale Linien begrenzt wird, rotiert um die x-Achse . Skizziere den Rotationskörper und berechne sein Volumen.

a)
$$f(x) = 1.5x$$
, $x = 2$, $x = 4$.

b)
$$f(x) = 4 - 2x$$
, $x = 0$, $x = 1$

c)
$$f(x) = x^2$$
, $x = 0$, $x = 2$.

d)
$$f(x) = \sqrt{x}, \quad x = 0, x = 4.$$

e)
$$f(x) = e^x$$
, $x = 0, x = 1$.

f)
$$f(x) = \frac{1}{x}$$
, $x = 0.5$, $x = 1$.

Aufgabe 3. Eine Figur, die durch den Graphen der Funktion f(x), die y-Achse und zwei horizontale Linien begrenzt wird, rotiert um die y-Achse. Skizziere den Rotationskörper und berechne sein Volumen.

Hinweis: Betrachte für die Funktion y = f(x) die Umkehrfunktion x = g(y).

a)
$$f(x) = 2x$$
, $y = 1$, $y = 2$

b)
$$f(x) = 4 - 0.5x$$
 $y = -1$, $y = 1$

c)
$$f(x) = x^2$$
, $y = 0$, $y = 1$

b)
$$f(x) = 4 - 0.5x$$
 $y = -1$, y
d) $f(x) = 2\sqrt{x}$, $y = 0$, $y = 2$

e)
$$f(x) = \frac{2}{x}$$
, $y = 1$, $y = 2$

f)
$$f(x) = 3\ln(x)$$
, $y = 0$, $y = 3$.

Aufgabe 4. Eine Figur, die durch zwei Funktionsgraphen und durch horizontale und vertikale Geraden begrenzt wird, rotiert um die x-Achse. Skizziere den erhaltenen Rotationskörper und ermittle sein Volumen.

1

a)
$$f(x) = 2$$
, $g(x) = x$, $x = 0$.

b)
$$f(x) = 2x$$
, $g(x) = \sqrt{x-1}$, $x = 2$, $y = 0$.

c)
$$f(x) = x^2$$
, $g(x) = 2 - x$, $y = 0$.

d)
$$f(x) = \frac{2}{x}$$
, $g(x) = x + 1$, $x = 0$, $x = 2$, $y = 0$.

Aufgabe 5. Eine Figur, die durch die angegebene Linien begrenzt wird, rotiert um die y-Achse. Skizziere den erhaltenen Rotationskörper und ermittle sein Volumen.

a)
$$f(x) = -1.5x + 3$$
, $g(x) = x - 2$, $x = 0$.

b)
$$f(x) = \sqrt{x+1}$$
, $g(x) = 5 - x$, $x = 0$.

c)
$$f(x) = x^2 + 2$$
, $g(x) = 4x - 2$, $x = 0$.

d)
$$f(x) = \sqrt{x-1}$$
, $g(x) = 0.5x + 1$, $x = 0$, $x = 2$, $y = 0$.

Aufgabe 6. (\star)

Leite mithilfe der Methoden der Integralrechnung die Formel zur Berechnung des Volumens der folgenden Körper her.

- a) Kugel mit Radius R.
- b) Drehkegel mit Radius R und Höhe H.