THE DYNAMICS OF THE QUADRATIC FAMILY

HERBERT KOCH

Let $\mu>0$ and $f_{\mu}: \mathbb{R} \rightarrow \mathbb{R}$ be the map $x \rightarrow \mu x(1-x)$. For a given number x_{0} we consider the sequence which is recursively defined by

$$
x_{n+1}=\mu x_{n}\left(1-x_{n}\right) .
$$

We visualize the dynamics for the value $\mu=0.9$ in the following picture: Starting from a point on the x axis we draw a vertical line to the graph of the function, then a horizontal line to the diagonal, and then a vertical line to the graph and so on.

Here the points converge to 0 . For $\mu=3$ we see convergence to the intersection of the diagonal and the graph in the picture, which corresponds to convergence to the fixed point $x=\frac{2}{3}$ (which is mapped to itself). For $\mu=5$ we see a sequence tending to $-\infty$.

We will see that we can get a good understanding of the behavior of the sequences. There are fixed points, period sequences and chaotic dynamics. The main tool will be the intermediate value theorem.

