
52. Austrian Math Olympiads (ÖMO)
Special Math. Olympiad course ”‘Mathematik macht Freu(n)de”’ – Problem sheet for Jan, 16th, 2021

Procedure

These notes are created by Irfan Glogić. Please send questions and (sketches of) solutions to Prob-
lems via E-Mail. We provide hints on Jan, 12th, 2021. Irfan addresses the problems at the virtual
course on Jan, 16th, 2021: 13:15–15:00. You can discuss your solutions there. Afterwards we provide
complete solutions to the problems. Contact us, if you want to take part in this course. You are
always welcome!

The notes are self-contained, and apart from basic elementary number theory facts no additional
knowledge is necessary to follow them. To do the exercises, the ideas that appear beforehand in notes
should for the most part suffice. Also, exercises have expository significance, and I strongly advise
solving (or at least trying) every one of them in the order they appear. The problems, on the other
hand, might in addition require a non-trivial idea/trick/fact (which makes them competition type),
and they can be skipped at the first reading. Nonetheless, their placement in notes indicates the
(quadratic residue) theory necessary to solve them. Harder problems are indicated with an asterisk.

Quadratic Residues

Irfan Glogić

1 Basic definitions and theorems

Definition 1.1. Let m and a be integers with m > 1 and (m, a) = 1. We say that a is a quadratic

residue modulo m if there exists an integer x for which x2 ≡ a (mod m), otherwise a is called a

quadratic non-residue modulo m.

Theorem 1.2. Let p be an odd prime. Within the reduced set {1, 2, . . . , p− 1} of residues modulo

p, there are exactly p−1
2 quadratic residues, and consequently equally many quadratic non-residues.

Proof. Every quadratic residue modulo p is congruent to the square of one of the following numbers

−p− 1

2
, . . . ,−1, 1, . . . ,

p− 1

2
,

i.e., it is congruent to one of these, 12, 22, . . . , (p−1
2 )2. It remains to show that these numbers are

pairwise incongruent modulo p. This is left as an exercise.

Exercise 1.3. Complete the proof of Theorem 1.2.

For an odd prime p we define the function
(

·
p

)
: Z→ {−1, 0, 1} in the following way

(
a

p

)
=


−1

0

1

if p - a and a is a quadratic non-residue (mod p),

if p | a,

if p - a and a is a quadratic residue (mod p).

(1.1)

The quantity in (1.1) is referred to as Legendre symbol.
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Theorem 1.4 (Euler’s criterion). For an odd prime p we have that(
a

p

)
≡ a(p−1)/2 (mod p).

Proof. First assume (ap ) = 1. Then there exists an integer x0 for which x20 ≡ a (mod p), and by

using Fermat’s little theorem we see that

a(p−1)/2 =
(
x20
)(p−1)/2 ≡ xp−1

0 ≡ 1 (mod p).

Now assume (ap ) = −1. Since (a, p) = 1 for every i ∈ {1, 2, ..., p − 1}, there exists a unique j from

the same set such that j 6= i and ij ≡ a (mod p) (this is left as an exercise). Therefore, numbers

1, 2, ..., p−1 can be grouped in pairs whose products are congruent to a modulo p. After multiplying

all of these pairs we get

(p− 1)! ≡ a(p−1)/2(mod p),

and the conclusion follows from Wilson’s theorem.

Exercise 1.5. Let p be an odd prime and a, b integers not divisible by p. Show that

i) a ≡ b (mod p) implies

(
a

p

)
=

(
b

p

)
,

ii)

(
a

p

)(
b

p

)
=

(
ab

p

)
and

(
a2

p

)
= 1.

Problem 1.6. Let p be an odd prime. Prove that there exists a positive integer a <
√
p+ 1 which

is a quadratic non-residue modulo p.

Euler’s criterion applied to a = −1 yields (−1
p ) = (−1)

p−1
2 . Therefore, −1 is a quadratic residue

modulo p if and only if p ≡ 1 (mod 4). This observation yields the following lemma.

Lemma 1.7. Every prime divisor of n2 + 1 is of the form 4k + 1.

Exercise 1.8. By using the previous lemma prove that there are infinitely many prime numbers

of the form 4k + 1.

Problem 1.9. Prove that the equation y2 = x3 + 7 does not have integer solutions. Generalize

this statement to an infinite family od Diophantine equations of the form y2 = x3 + c.

2 Application of primitive roots

Definition 2.1. Let n be a positive integer. An integer g is called a primitive root modulo n if

every integer relatively prime to n is congruent to a power of g modulo n.

It is known that primitive roots modulo odd primes exist. Moreover, for a given primitive root g

modulo p, the numbers g, g2, . . . , gp−1 form a reduced system of residues. In particular, g(p−1)/2 6≡
1 (mod p). Furthermore, since (g(p−1)/2)2 ≡ gp−1 ≡ 1 (mod p) and the equation x2 ≡ 1 (mod p) has

exactly two solution, namely x ≡ ±1 (mod p), we obtain the following lemma.



Lemma 2.2. Let g be a primitive root modulo odd prime p. Then

g
p−1
2 ≡ −1 (mod p).

In other words, primitive roots are quadratic non-residues.

Theorem 2.3. Let g be a primitive root modulo odd prime p. Then quadratic residues modulo p

are given by g2, g4, . . . , gp−1, and non-residues are g, g3, . . . , gp−2.

Proof. Even powers g2, g4, . . . , gp−1 are obviously quadratic residues modulo p, and since g is a

primitive root, these numbers are all distinct (modulo p). Consequently, the odd powers must

be non-residues. A more direct way to obtain this later conclusion is the following. Since g is,

according to Lemma 2.2, a quadratic non-residue, then g, g3, . . . , gp−2, i.e., g · 1, g · g2, . . . , g · gp−3

are, according to Exercise 1.5, non-residues.

Now, by using Theorem 2.3 we can come up with a short proof of Euler’s criterion.

Proof 2 of Theorem 1.4. If (ap ) = 1 then a ≡ g2k (mod p) and therefore a(p−1)/2 ≡ (gp−1)k ≡
1 (mod p). If (ap ) = −1 then a ≡ g2k+1 (mod p) and hence a(p−1)/2 ≡ (gp−1)k · g(p−1)/2 ≡ 1 · (−1) ≡
−1 (mod p).

3 Gauss’ lemma

Theorem 3.1 (Gauss’ lemma). Let p = 2n + 1 be a prime number, A =
{

1, 2, . . . , p−1
2

}
=

{a1, a2, . . . , an}, and a an integer not divisible by p. Furthermore, let

aia ≡ (−1)
s(i)

at(i) (mod p), (3.1)

for every ai ∈ A, where s(i) ∈ {0, 1} and t(i) ∈ {1, 2, . . . , n}. Then

an ≡
n∏
i=1

(−1)s(i) (mod p). (3.2)

So, a is a quadratic residue or non-residue depending on whether the number of non-zero exponents

s(i) is even or not.

Proof. First, observe that {at(i) : 1 ≤ i ≤ n} = A, i.e., at(i) are ai reordered. Indeed, if aia ≡
(−1)

s(i)
at(i) (mod p) and aja ≡ (−1)

s(j)
at(j) (mod p) for i 6= j and at(i) = at(j), then we would

have ai/aj ≡ (−1)s(i)−s(j) (mod p), i.e., ai ≡ ±aj (mod p) for some choice of signs, but that implies

ai = aj since 1 ≤ ai, aj ≤ p−1
2 , which contradicts i 6= j. By multiplying the n congruences (3.1) we

get

an ·
n∏
i=1

ai ≡
n∏
i=1

(−1)s(i) ·
n∏
i=1

at(i) (mod p).

Finally, since
∏n
i=1 ai =

∏n
i=1 at(i), canceling these factors in the previous congruence yields (3.2).

By exploiting Gauss’ lemma, we can prove the following result.



Lemma 3.2. Let p be an odd prime. Then ( 2
p ) = (−1)(p

2−1)/8, that is(
2

p

)
=

{
1

−1

if p ≡ 1 or 7 (mod 8)

if p ≡ 3 or 5 (mod 8).

Proof. For p ≡ 1 or 5 (mod 8) we get that s(i) = 0 for 1 ≤ i ≤ (p − 1)/4 and s(i) = 1 for

(p + 3)/4 ≤ i ≤ (p − 1)/2, so 2(p−1)/2 ≡ (−1)(p−1)/4 (mod p). Therefore ( 2
p ) = 1 or −1 depending

on whether p ≡ 1 or 5 (mod 8). Similarly we get that ( 2
p ) = 1 or −1 depending on whether

p ≡ 7 or 3 (mod 8).

Based on Euler’s criterion and the previous lemma we have that(
−2

p

)
=

(
−1

p

)(
2

p

)
= (−1)

p−1
2 + p2−1

8 = (−1)
p2+4p−5

8 = (−1)
(p+5)(p−1)

8 , (3.3)

from which it follows that −2 is a quadratic residue modulo odd prime p if and only if p ≡
1 or 3 (mod 8).

Problem 3.3. Let n be a positive integer. Prove that

i) if n is odd then all prime divisors of 2n − 1 are of the form 8k ± 1,

ii) the number 2n + 1 has no prime divisors of the form 8k − 1.

4 The law of quadratic reciprocity

We now formulate (without proof) a fundamental result which relates Legendre symbols (pq ) i ( qp )

for odd primes p and q.

Theorem 4.1 (The law of quadratic reciprocity (LQR)). Let p and q be distinct odd prime numbers.

Then (
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

With this theorem at hand we can easily establish the following result.

Lemma 4.2. For an odd prime p 6= 3 we have that(
−3

p

)
=

{
1

−1

if p ≡ 1 (mod 6),

if p ≡ 5 (mod 6).

Proof. According to Euler’s criterion and LQR we have that(
−3

p

)
=

(
−1

p

)(
3

p

)
= (−1)

p−1
2

(p
3

)
(−1)

p−1
2

3−1
2 =

(p
3

)
.

Furthermore, (p3 ) = ( 1
3 ) = 1 if p ≡ 1 (mod 3), and (p3 ) = ( 2

3 ) = −1 if p ≡ 2 (mod 3). From this and

the fact that every prime greater than 3 is of the form 6k ± 1 the lemma follows.

Exercise 4.3. For an odd prime p show that

i) 3 is a quadratic residue modulo p if and only if p ≡ ±1 (mod 12),



ii) 5 is a quadratic residue modulo p if and only if p ≡ ±1 (mod 10).

Exercise 4.4. Use part ii) from the previous exercise to show that there are infinitely many prime

numbers of the form 10k + 9.

Problem 4.5. Let n be a positive integer. Prove that all prime divisors of n4 − n2 + 1 are of the

form 12k + 1.

Problem 4.6.* Let a be a positive integer which is not a square. Prove that (ap ) = −1 for infinitely

many primes p.

5 Additional problems

Problem 5.1. Prove that for every prime p there are integers a, b such that p | a2 + b2 + 1.

Problem 5.2. Prove that for no integer n > 1 does 2n − 1 divide 3n − 1.

Problem 5.3. Let n be a positive integer. Prove that all prime divisors of n8 − n4 + 1 are of the

form 24k + 1.

Problem 5.4.* Prove that there are no positive integers a, b, c for which 3(ab+bc+ca) | a2+b2+c2.

Problem 5.5.* Let m and n be positive integers for which A = (m+3)n+1
3m is also an integer. Prove

that A is odd.

Problem 5.6.* Let m and n be positive integers for which ϕ(5m − 1) = 5n − 1. Prove that m and

n are not relatively prime.



Hints to problems

Problem 1.6. Assume contrary, and let a ≥ √p + 1 be the least non-residue. Then construct a

smaller one.

Problem 1.9. Consider y2 + 1, and use Lemma 1.7.

Problem 3.3. i) Find ( 2
p ). ii) Find (−1

p ) or (−2
p ), depending on the parity of n.

Problem 4.5. Note that n4 − n2 + 1 = (n2 − 1)2 + n2 = (n2 + 1)2 − 3n2.

Problem 4.6. Use Dirichlet’s theorem on primes in arithmetic progressions.

Problem 5.1. Consider b = na.

Problem 5.2. Show existence of a prime which divides 2n − 1 but not 3n − 1.

Problem 5.3. Use Problem 4.5 and the fact that n12 + 1 = (n4 + 1)(n8 − n4 + 1).

Problem 5.4. Assume contrary and then exploit the fact that (a+b+c)2 = (3n+2)(ab+bc+ca).

Problem 5.5. Assume contrary and study m modulo powers of 2.

Problem 5.6. Consider the prime factorization of 5m − 1.



Solution to problems

Solutions proposed by Irfan Glogić, edited by the MmF-Team

Problem 1.6. We argue by contradiction. Assume a ≥ √p+ 1 is the least quadratic non-residue.

Then define b := b pac + 1. Note that b <
√
p + 1 and therefore b is a quadratic residue. Then by

Exercise 1.5 we have that ab− p is a non-residue, but also 0 < ab− p < a, which is a contradiction

with the minimality of a.

Problem 1.9. By considering the equation modulo 4, we conclude that x must be odd. In

addition, we have that y2 + 1 = x3 + 8 = (x+ 2)(x2 − 2x+ 4) = (x+ 2)
[
(x2 − 1)2 + 3)

]
, and since

the quadratic factor on the right is of the form 4k + 3, it must have a prime divisor of the same

form. But this prime then divides y2 + 1 as well, which is impossible by Lemma 1.7. To generalize,

one can take c = 8a3 − 1 for any odd a.

Problem 3.3. i) Let n = 2m+1 and take a prime p which divides 2n−1. Then 1 ≡ 2(2m)2 (mod p),

i.e., 2 ≡ (2−m)2 (mod p), so ( 2
p ) = 1 and by Lemma 3.2 the conclusion follows.

ii) Assume the contrary, that there exists a prime p = 8k − 1 which divides 2n + 1. If n is even

then −1 ≡ (2n/2)2 (mod p), so 1 = (−1
p ) = (−1)(p−1)/2 = (−1)4k−1 = −1, a contradiction. If n is

odd then −2 ≡ (2(m+1)/2)2 (mod p), so 1 = (−2
p ) = (−1)(p+5)(p−1)/8 = (−1)(2k+1)(4k−1) = −1, a

contradiction.

Problem 4.5. The observation from the hint implies that for every prime divisor p we have(
n2 − 1

n

)2

≡ −1 (mod p) and

(
n2 + 1

n

)2

≡ 3 (mod p).

So (−1
p ) = ( 3

p ) = 1, which, based on Euler’s criterion and Exercise 4.3, implies that p ≡ 1 (mod 12).

Problem 4.6. Without loss of generality we can assume that a is not divisible by a square.

If a = 2 the claim follows from Lemma 3.2 and the infinitude of primes of the form 8k + 3. We

therefore assume a > 2. Then we have the prime factorization a = 2αp1p2 . . . pk, where α ∈ {0, 1}.
Furthermore, for every odd prime p we have by LQR that(

a

p

)
=

(
2α

p

) k∏
i=1

(
pi
p

)
=

(
2α

p

) k∏
i=1

(−1)
pi−1

2
p−1
2

(
p

pi

)
. (5.1)

Now we prove that there are infinitely many p for which the expression on the right of (5.1) is equal

to −1. By the Chinese remainder theorem there is an integer x for which

x ≡ 1 (mod 8), x ≡ 1 (mod pi) for 1 ≤ i ≤ k − 1, and x ≡ b (mod pk)

where b is an arbitrary quadratic non-residue modulo pk. Since (8a, x) = 1, according to Dirichlet’s

theorem about primes in arithmetic progressions we conclude that there are infinitely many primes

p of the form p = 8an+ x, for all of which, based on (5.1), we have that (ap ) = −1.



Problem 5.1. If p = 4k + 1 then (−1
p ) = 1, i.e., −1 ≡ x2 (mod p) for some integer x. Then we

take a = x and b = 0. If p = 4k + 3 then the set {n2 + 1 : 0 ≤ n ≤ p−1
2 } consists of p+1

2 numbers

not divisible by p and pairwise incongruent modulo p. Consequently, this set contains a quadratic

non-residue, call it n20 + 1. Then −1 · (n20 + 1)−1 is a quadratic residue, so there exists integer x for

which x2 ≡ −(n20 + 1)−1 (mod p), and the claim holds for a = x and b = n0x.

Problem 5.2. If n is even then 3 | 2n − 1 but 3 - 3n − 1. Let n be odd. Then 3 - 2n − 1 and

therefore 2n − 1 is of the form 12k± 5, so it must have a prime divisor p of the same form. On the

other hand, p | 3(3n − 1) i.e. (3(n+1)/2)2 ≡ 3 (mod p), so ( 3
p ) = 1. But, according to Exercise 4.3 ,

this is impossible.

Problem 5.3. Let p be a prime divisor of n8 − n4 + 1. By Problem 4.5, it follows that

p ≡ 1 (mod 3). It remains to show that p ≡ 1 (mod 8). Note that p | (n4 +1)(n8−n4 +1) = n12 +1,

i.e., n12 ≡ −1 (mod p). It follows that ordpn divides 24 but not 12, so ordpn ∈ {8, 24}. Since

ordpn | p− 1, in both cases we have that 8 | p− 1, and the claim follows.

Problem 5.4. Assume the contrary, that there are a, b, c and n for which a2 + b2 + c2 =

3n(ab+ bc+ ca). From this it follows that (a+ b+ c)
2

= (3n+2)(ab+ bc+ ca), and since 3n+2 can

not be a square, there is a prime p ≡ 2 (mod 3) which divides all three factors in the last equality.

In particular, p | a + b + c and p | ab + bc + ca, from which it follows that p | a2 + ab + b2, and

from there p | (2a+ b)
2

+3c2. Consequently (−3
p ) = 1. Now, according to Lemma 4.2, we have that

p ≡ 1 (mod 3), but this is in contradiction with p ≡ 2 (mod 3).

Problem 5.5. Assume the contrary, that A is an even number. Then

(m+ 3)n + 1 = 6km, (5.2)

and therefore m has to be even as well. By considering this equality modulo 3 we conclude that

m = 3l + 2 and n is odd. Let m = 2αm1, where m1 is odd. By considering equality (5.2)

modulo 2α we get that 3n + 1 ≡ 0 (mod 2α), which implies α ≤ 2. Furthermore, we have that

(3(n+1)/2)2 ≡ −3 (mod m1), and, according to Lemma 4.2, we conclude that m1 = 6m2 + 1. From

m = 2α(6m2 + 1) = 3l+ 2 and α ≤ 2 it follows that α = 1. Then m = 12m2 + 2, and reducing (5.2)

modulo 4 we get 5n + 1 ≡ 0 (mod 4), which is impossible.

Problem 5.6. Assume the contrary, that (m,n) = 1. According to the prime factorization

5m − 1 = 2αpα1
1 · · · p

αk

k (5.3)

we have that

5n − 1 = ϕ(5m − 1) = 2α−1pα1−1
1 · · · pαk−1

k (p1 − 1) · · · (pk − 1). (5.4)

Since (5m − 1, 5n − 1) = 5(m,n) − 1 = 4 then from the two displayed equations above we conclude

that αi = 1 for all i = 1, . . . , k, and α = 2. Since 8 | 5m − 1 for even m, we infer that m is odd,

i.e., m = 2m1 + 1. Since pi | 5 · (5m1)2 − 1 for i = 1, . . . , k, we see that ( 5
pi

) = 1, and hence, ac-

cording to Exercise 4.3, pi ≡ ±1 (mod 5). Because of (5.4) no pi− 1 is divisible by 5, and therefore

pi ≡ −1 (mod 5). Now, reducing (5.3) modulo 5 we get 1 = (−1)k, i.e., k is even. On the other



hand, reducing (5.4) modulo 5 we get 1 ≡ (−2)k+1 (mod 5), implying k ≡ 3 (mod 4), which is a

contradiction with the evenness of k.
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