

50. Österreichische Mathematik-Olympiade

17.Mai 2019

Vorbereitungskurs (F) "Mathematik macht Freu(n)de"

F_2019_05_17

1.) Seien I bzw. I _a Mittelpunkte des Inkreises k bzw. des Ankreises k _a des Dreiecks ABC. Zeige, dass der Schnittpunkt der Strecke II _a mit dem Umkreis des Dreiecks ABC die Strecke II _a halbiert.	Deutsche Mathematik-Olympiade 2017/2018
2.) Löse das System in den reellen Zahlen: $x\sqrt{1-y^2} = \frac{1}{4}(\sqrt{3}+1)$ $y\sqrt{1-x^2} = \frac{1}{4}(\sqrt{3}-1)$	Deutsche Mathematik-Olympiade 2016/2017
3.) Für $0 \le a < \sqrt{b} < a+1$ gilt: $\sqrt{b} > a + \frac{b-a^2}{2a+1}$	Hermann; Kucera; Simsa Equations & Inequalities
 4.) Sei k > 2 und a, b, c die Seiten eines rechtwinkeligen Dreiecks (c ist die Hypotenuse). Dann gilt: a^k + b^k < c^k 	Hermann; Kucera; Simsa Equations & Inequalities S97
5.) AB ist die Sehne eines Kreises und E ein innerer Punkt von AB. Durch E geht die Sehne CD. Der Punkt M liegt im Inneren der Strecke EB. Auf dem Kreis k liegen die Punkte D; E; M. Die Tangente an k in E sei t. t schneidet BC in F und t schneidet AC in G. Das Verhältnis AM:AB = λ. Wie groß (ausgedrückt mit Hilfe der Größe λ) ist EG:EF?	IMO 1990
6.) Gegeben ist die Gleichung x² +4z² +6x +7y +8z =1. Man bestimme alle ganzzahligen Lösungstripel (x; y; z) mit y ≥ 0.	
7.) Zeige, dass die Menge M = {1; 2; 3;; n} gleich viele Teilmengen mit gerader wie mit ungerader Elementanzahl besitzt.	Kirschenhofer 2003 Fortbildungsseminar Mariazell
8.) Bestimme alle Paare natürlicher Zahlen (x; y), für die (x+y)! = (xy)! gilt.	Baron Mariazell 2003
9.) Gegeben ist die Menge M = {1; 2; 3;; n} mit n > 2. Man denke sich alle zweielementigen Teilmengen angeschrieben und in diesen das jeweils kleinste Element gefärbt. Wie groß ist der Mittelwert (arithmetisches Mittel) aller eingefärbten Elemente?	aus IMO 1981
10.) Seien a, b, c positive ganze Zahlen. Kann a³ + b³ + c³ - 3abc eine Primzahl sein?	