Blatt 12

Wieder einmal "quer durch den Gemüsegarten", also Wiederholung zu allen VO-Kapiteln des Sommersemesters:

78 Zeigen Sie: Wenn $A \in M_n(\mathbb{K})$ invertierbar ist, dann gilt für die charakteristischen Polynome und jedes $\lambda \in \mathbb{K}$, $\lambda \neq 0$, die Relation $\chi_{A^{-1}}(\lambda) = \frac{(-\lambda)^n}{\det(A)} \chi_A(\frac{1}{\lambda})$. Was passiert mit dieser Gleichung im Falle $\mathbb{K} = \mathbb{R}$ für $\lambda \to 0$? [Hinweis: Wir wissen (woher?), dass $\chi_A(x) = (-1)^n x^n + O(|x|^{n-1})$ für $x \to \infty$ ist; daher bleibt $(-\lambda)^n \chi_A(\frac{1}{\lambda})$ für $\lambda \to 0$ kontrollierbar.]

$$\boxed{\textbf{79}} \text{ Zeigen Sie: Für } A_n = \begin{pmatrix} b & a & \cdots & a \\ a & b & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & b \end{pmatrix} \in M_n(\mathbb{K}) \text{ gilt } \det(A_n) = (b + (n-1)a)(b-a)^{n-1}.$$

80 Ist die Matrix
$$\begin{pmatrix} 1 & 0 & 3 \\ 3 & -2 & -1 \\ 1 & -1 & 1 \end{pmatrix}$$
 diagonalisierbar über \mathbb{R} ? Über \mathbb{Q} ?

Falls ja, geben Sie eine Basis aus Eigenvektoren und die zugehörige Diagonalmatrix an.

 $oxed{81}$ Wenden Sie auf die Vektoren $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ -3 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$ im euklidischen Standardraum \mathbb{R}^3 das Orthonormalisierungsverfahren von Gram-Schmidt an.

82 (a) Ist die Matrix $\begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{pmatrix}$ diagonalisierbar über \mathbb{R} ? Über \mathbb{C} ?

(b) Der Shift-Operator S auf dem Raum $\mathbb{R}^{\mathbb{N}}$ aller reellen Zahlenfolgen ist gegeben durch $S(a_1, a_2, \ldots) = (0, a_1, a_2, \ldots)$. Zeigen Sie, dass S keinen Eigenwert hat.

83 Was sind die Eigenvektoren und Eigenwerte zu
$$\begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix} \in M_n(\mathbb{K})$$
?

84 Es sei V ein \mathbb{R} -Vektorraum, $A \in L(V)$ und $v, w \in V \setminus \{0\}$, sodass Av = 3w und Aw = 3v gilt. Zeigen Sie, dass -3 oder 3 ein Eigenwert zu A sein muss.

Zur Verfügung gestellt von:

Günther Hörmann UE Lineare Algebra und Geometrie 1, SoSe 2019

LV-Nr.: 250152

Fakultät für Mathematik, Universität Wien

Danke!