ÜBUNGSBLATT 1

Beispiel 1.

Bestimmen Sie das Innere, den Abschluß und den Rand der Mengen

(a)
$$A_1 := \{z \in \mathbb{C} \mid 1 \le |z| < 2\} \text{ in } \mathbb{C},$$

(b)
$$A_2 := \{(x, y) \in \mathbb{R}^2 \mid \exists r \in \mathbb{Z} : y = rx\} \text{ in } \mathbb{R}^2,$$

(c)
$$A_3 := \mathbb{Q}$$
 in \mathbb{R} und

(d)
$$A_4 := \mathbb{R} \setminus \mathbb{Q}$$
 in \mathbb{C} .

Beispiel 2.

Sei $n \in \mathbb{N} \setminus \{0\}$. Zeigen Sie, daß für jede Teilmenge $A \subset \mathbb{C}^n$ die Beziehung

$$\mathring{A} = \mathbb{C}^n \setminus \overline{A^c}$$

gilt, wobei $A^{c} = \mathbb{C}^{n} \setminus A$ das Komplement von A in \mathbb{C}^{n} bezeichne.

Beispiel 3.

Bestimmen Sie, an welchen Stellen die Funktionen

(a)
$$f_1: [0,\infty[\to \mathbb{R}, f_1(x) := \sqrt[n]{x},$$

(b)
$$f_2 \colon \mathbb{R} \to \mathbb{R}, f_2(x) \coloneqq |x|,$$

(c)
$$f_3: \mathbb{R} \to \mathbb{R}, f_3(x) \coloneqq \sqrt{|x^2|},$$

(d)
$$f_4 : \mathbb{R} \setminus \{0\} \to \mathbb{R}, f_4(x) := (x^2 + 2x^{-\frac{1}{3}} + 3)g(|x|)^{-1}, \text{ und}$$

(e)
$$f_5 : \mathbb{R} \to \mathbb{R}, f(x) \coloneqq x \mathbf{1}_{\mathbb{R} \setminus \mathbb{Q}}(x),$$

stetig sind, wobei $g:]0, \infty[\to]0, \infty[$ eine beliebige stetige Funktion bezeichne und die Indikatorfunktion $\mathbf{1}_A \colon \mathbb{R} \to \{0,1\}$ einer Menge $A \subset \mathbb{R}$ durch

$$\mathbf{1}_{A}(x) := \begin{cases} 1 & \text{für } x \in A, \\ 0 & \text{für } x \notin A \end{cases}$$

definiert sei.

Beispiel 4.

Sei

$$f\colon D\subset\mathbb{C}\to\mathbb{C},\ f(z)\coloneqq\frac{p(z)}{q(z)},$$

eine rationale Funktion mit zwei Polynomfunktionen $p,q\colon\mathbb{C}\to\mathbb{C}$ der Form

$$p(z) = \prod_{i=1}^{m} (z - a_i) \text{ und } q(z) = \prod_{j=1}^{n} (z - b_j)$$

für Punkte $(a_i)_{i=1}^m$ und $(b_j)_{j=1}^n$ in $\mathbb{C}, m, n \in \mathbb{N}$.

- (a) Bestimmen Sie die größtmögliche Menge $D \subset \mathbb{C}$, auf der f wohldefiniert und stetig ist.
- (b) Bestimmen Sie die größtmögliche Teilmenge $\hat{D} \supset D$ von \mathbb{C} , für die eine stetige Funktion $\hat{f} \colon \hat{D} \to \mathbb{C}$ mit $\hat{f}|_{D} = f$ existiert.

Beispiel 5.

Seien $f_1, \ldots, f_n \colon \mathbb{R} \to \mathbb{R}, n \in \mathbb{N} \setminus \{0\}$, stetige Funktionen. Zeigen Sie, daß die Funktion

$$g \colon \mathbb{R} \to \mathbb{R}, \ g(x) := \max_{j \in \{1, \dots, n\}} f_j(x),$$

stetig ist.

Beispiel 6.

Bestimmen Sie, in welchen Punkten die Funktion

$$f\colon [0,\infty[^2\to\mathbb{R},\ f(x,y):=\begin{cases} \frac{x}{y} & \text{für } y>x,\\ \frac{y}{x} & \text{für } x>y,\\ 1 & \text{für } x=y, \end{cases}$$

stetig ist.

Beispiel 7.

Seien $a, b \in \mathbb{R}$ mit a < b. Eine Funktion $f: [a, b] \to \mathbb{R}$ heißt konkav, falls

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
 für alle $\lambda \in [0, 1]$ und alle $x, y \in [a, b]$

gilt. Zeigen Sie, daß jede konkave Funktion $f: [a, b] \to \mathbb{R}$ auf [a, b] stetig ist.

Beispiel 8.

Eine Funktion $f:]a, b[\to \mathbb{R}$ heißt unterhalbstetig, wenn für jeden Punkt $x \in]a, b[$ und jede gegen den Punkt x konvergierende Folge $(x_n)_{n \in \mathbb{N}}$

$$f(x) \le \liminf_{n \to \infty} f(x_n)$$

gilt.

Zeigen Sie, daß eine Funktion f: a, b genau dann unterhalbstetig ist, wenn die Funktion

$$\hat{f} \colon]a,b[\to \mathbb{R}, \ \hat{f}(x) \coloneqq \sup_{n \in \mathbb{N}} \inf \{ f(y) \mid y \in \mathcal{B}_{\frac{1}{n+1}}(x) \},$$

mit f übereinstimmt.